65 resultados para MULTIVARIATE DISTRIBUTIONS
Resumo:
This paper develops a methodology to estimate the entire population distributions from bin-aggregated sample data. We do this through the estimation of the parameters of mixtures of distributions that allow for maximal parametric flexibility. The statistical approach we develop enables comparisons of the full distributions of height data from potential army conscripts across France's 88 departments for most of the nineteenth century. These comparisons are made by testing for differences-of-means stochastic dominance. Corrections for possible measurement errors are also devised by taking advantage of the richness of the data sets. Our methodology is of interest to researchers working on historical as well as contemporary bin-aggregated or histogram-type data, something that is still widely done since much of the information that is publicly available is in that form, often due to restrictions due to political sensitivity and/or confidentiality concerns.
Resumo:
We investigate the transition to synchronization in the Kuramoto model with bimodal distributions of the natural frequencies. Previous studies have concluded that the model exhibits a hysteretic phase transition if the bimodal distribution is close to a unimodal one, due to the shallowness the central dip. Here we show that proximity to the unimodal-bimodal border does not necessarily imply hysteresis when the width, but not the depth, of the central dip tends to zero. We draw this conclusion from a detailed study of the Kuramoto model with a suitable family of bimodal distributions.
Resumo:
We present a real data set of claims amounts where costs related to damage are recorded separately from those related to medical expenses. Only claims with positive costs are considered here. Two approaches to density estimation are presented: a classical parametric and a semi-parametric method, based on transformation kernel density estimation. We explore the data set with standard univariate methods. We also propose ways to select the bandwidth and transformation parameters in the univariate case based on Bayesian methods. We indicate how to compare the results of alternative methods both looking at the shape of the overall density domain and exploring the density estimates in the right tail.
Resumo:
When actuaries face with the problem of pricing an insurance contract that contains different types of coverage, such as a motor insurance or homeowner's insurance policy, they usually assume that types of claim are independent. However, this assumption may not be realistic: several studies have shown that there is a positive correlation between types of claim. Here we introduce different regression models in order to relax the independence assumption, including zero-inflated models to account for excess of zeros and overdispersion. These models have been largely ignored to multivariate Poisson date, mainly because of their computational di±culties. Bayesian inference based on MCMC helps to solve this problem (and also lets us derive, for several quantities of interest, posterior summaries to account for uncertainty). Finally, these models are applied to an automobile insurance claims database with three different types of claims. We analyse the consequences for pure and loaded premiums when the independence assumption is relaxed by using different multivariate Poisson regression models and their zero-inflated versions.
Resumo:
This paper proposes a contemporaneous-threshold multivariate smooth transition autoregressive (C-MSTAR) model in which the regime weights depend on the ex ante probabilities that latent regime-specific variables exceed certain threshold values. A key feature of the model is that the transition function depends on all the parameters of the model as well as on the data. Since the mixing weights are also a function of the regime-specific innovation covariance matrix, the model can account for contemporaneous regime-specific co-movements of the variables. The stability and distributional properties of the proposed model are discussed, as well as issues of estimation, testing and forecasting. The practical usefulness of the C-MSTAR model is illustrated by examining the relationship between US stock prices and interest rates.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt"
Resumo:
This paper presents an analysis of motor vehicle insurance claims relating to vehicle damage and to associated medical expenses. We use univariate severity distributions estimated with parametric and non-parametric methods. The methods are implemented using the statistical package R. Parametric analysis is limited to estimation of normal and lognormal distributions for each of the two claim types. The nonparametric analysis presented involves kernel density estimation. We illustrate the benefits of applying transformations to data prior to employing kernel based methods. We use a log-transformation and an optimal transformation amongst a class of transformations that produces symmetry in the data. The central aim of this paper is to provide educators with material that can be used in the classroom to teach statistical estimation methods, goodness of fit analysis and importantly statistical computing in the context of insurance and risk management. To this end, we have included in the Appendix of this paper all the R code that has been used in the analysis so that readers, both students and educators, can fully explore the techniques described
Resumo:
We compare rain event size distributions derived from measurements in climatically different regions, which we find to be well approximated by power laws of similar exponents over broad ranges. Differences can be seen in the large-scale cutoffs of the distributions. Event duration distributions suggest that the scale-free aspects are related to the absence of characteristic scales in the meteorological mesoscale.
Resumo:
Tropical cyclones are affected by a large number of climatic factors, which translates into complex patterns of occurrence. The variability of annual metrics of tropical-cyclone activity has been intensively studied, in particular since the sudden activation of the North Atlantic in the mid 1990’s. We provide first a swift overview on previous work by diverse authors about these annual metrics for the North-Atlantic basin, where the natural variability of the phenomenon, the existence of trends, the drawbacks of the records, and the influence of global warming have been the subject of interesting debates. Next, we present an alternative approach that does not focus on seasonal features but on the characteristics of single events [Corral et al., Nature Phys. 6, 693 (2010)]. It is argued that the individual-storm power dissipation index (PDI) constitutes a natural way to describe each event, and further, that the PDI statistics yields a robust law for the occurrence of tropical cyclones in terms of a power law. In this context, methods of fitting these distributions are discussed. As an important extension to this work we introduce a distribution function that models the whole range of the PDI density (excluding incompleteness effects at the smallest values), the gamma distribution, consisting in a powerlaw with an exponential decay at the tail. The characteristic scale of this decay, represented by the cutoff parameter, provides very valuable information on the finiteness size of the basin, via the largest values of the PDIs that the basin can sustain. We use the gamma fit to evaluate the influence of sea surface temperature (SST) on the occurrence of extreme PDI values, for which we find an increase around 50 % in the values of these basin-wide events for a 0.49 C SST average difference. Similar findings are observed for the effects of the positive phase of the Atlantic multidecadal oscillation and the number of hurricanes in a season on the PDI distribution. In the case of the El Niño Southern oscillation (ENSO), positive and negative values of the multivariate ENSO index do not have a significant effect on the PDI distribution; however, when only extreme values of the index are used, it is found that the presence of El Niño decreases the PDI of the most extreme hurricanes.
Resumo:
In order to obtain a high-resolution Pleistocene stratigraphy, eleven continuouslycored boreholes, 100 to 220m deep were drilled in the northern part of the PoPlain by Regione Lombardia in the last five years. Quantitative provenanceanalysis (QPA, Weltje and von Eynatten, 2004) of Pleistocene sands was carriedout by using multivariate statistical analysis (principal component analysis, PCA,and similarity analysis) on an integrated data set, including high-resolution bulkpetrography and heavy-mineral analyses on Pleistocene sands and of 250 majorand minor modern rivers draining the southern flank of the Alps from West toEast (Garzanti et al, 2004; 2006). Prior to the onset of major Alpine glaciations,metamorphic and quartzofeldspathic detritus from the Western and Central Alpswas carried from the axial belt to the Po basin longitudinally parallel to theSouthAlpine belt by a trunk river (Vezzoli and Garzanti, 2008). This scenariorapidly changed during the marine isotope stage 22 (0.87 Ma), with the onset ofthe first major Pleistocene glaciation in the Alps (Muttoni et al, 2003). PCA andsimilarity analysis from core samples show that the longitudinal trunk river at thistime was shifted southward by the rapid southward and westward progradation oftransverse alluvial river systems fed from the Central and Southern Alps.Sediments were transported southward by braided river systems as well as glacialsediments transported by Alpine valley glaciers invaded the alluvial plain.Kew words: Detrital modes; Modern sands; Provenance; Principal ComponentsAnalysis; Similarity, Canberra Distance; palaeodrainage
Resumo:
Many multivariate methods that are apparently distinct can be linked by introducing oneor more parameters in their definition. Methods that can be linked in this way arecorrespondence analysis, unweighted or weighted logratio analysis (the latter alsoknown as "spectral mapping"), nonsymmetric correspondence analysis, principalcomponent analysis (with and without logarithmic transformation of the data) andmultidimensional scaling. In this presentation I will show how several of thesemethods, which are frequently used in compositional data analysis, may be linkedthrough parametrizations such as power transformations, linear transformations andconvex linear combinations. Since the methods of interest here all lead to visual mapsof data, a "movie" can be made where where the linking parameter is allowed to vary insmall steps: the results are recalculated "frame by frame" and one can see the smoothchange from one method to another. Several of these "movies" will be shown, giving adeeper insight into the similarities and differences between these methods
Resumo:
The preceding two editions of CoDaWork included talks on the possible considerationof densities as infinite compositions: Egozcue and D´ıaz-Barrero (2003) extended theEuclidean structure of the simplex to a Hilbert space structure of the set of densitieswithin a bounded interval, and van den Boogaart (2005) generalized this to the setof densities bounded by an arbitrary reference density. From the many variations ofthe Hilbert structures available, we work with three cases. For bounded variables, abasis derived from Legendre polynomials is used. For variables with a lower bound, westandardize them with respect to an exponential distribution and express their densitiesas coordinates in a basis derived from Laguerre polynomials. Finally, for unboundedvariables, a normal distribution is used as reference, and coordinates are obtained withrespect to a Hermite-polynomials-based basis.To get the coordinates, several approaches can be considered. A numerical accuracyproblem occurs if one estimates the coordinates directly by using discretized scalarproducts. Thus we propose to use a weighted linear regression approach, where all k-order polynomials are used as predictand variables and weights are proportional to thereference density. Finally, for the case of 2-order Hermite polinomials (normal reference)and 1-order Laguerre polinomials (exponential), one can also derive the coordinatesfrom their relationships to the classical mean and variance.Apart of these theoretical issues, this contribution focuses on the application of thistheory to two main problems in sedimentary geology: the comparison of several grainsize distributions, and the comparison among different rocks of the empirical distribution of a property measured on a batch of individual grains from the same rock orsediment, like their composition
Resumo:
The simplex, the sample space of compositional data, can be structured as a real Euclidean space. This fact allows to work with the coefficients with respect to an orthonormal basis. Over these coefficients we apply standard real analysis, inparticular, we define two different laws of probability trought the density function and we study their main properties
Resumo:
The literature related to skew–normal distributions has grown rapidly in recent yearsbut at the moment few applications concern the description of natural phenomena withthis type of probability models, as well as the interpretation of their parameters. Theskew–normal distributions family represents an extension of the normal family to whicha parameter (λ) has been added to regulate the skewness. The development of this theoreticalfield has followed the general tendency in Statistics towards more flexible methodsto represent features of the data, as adequately as possible, and to reduce unrealisticassumptions as the normality that underlies most methods of univariate and multivariateanalysis. In this paper an investigation on the shape of the frequency distribution of thelogratio ln(Cl−/Na+) whose components are related to waters composition for 26 wells,has been performed. Samples have been collected around the active center of Vulcanoisland (Aeolian archipelago, southern Italy) from 1977 up to now at time intervals ofabout six months. Data of the logratio have been tentatively modeled by evaluating theperformance of the skew–normal model for each well. Values of the λ parameter havebeen compared by considering temperature and spatial position of the sampling points.Preliminary results indicate that changes in λ values can be related to the nature ofenvironmental processes affecting the data
Resumo:
A compositional time series is obtained when a compositional data vector is observed atdifferent points in time. Inherently, then, a compositional time series is a multivariatetime series with important constraints on the variables observed at any instance in time.Although this type of data frequently occurs in situations of real practical interest, atrawl through the statistical literature reveals that research in the field is very much in itsinfancy and that many theoretical and empirical issues still remain to be addressed. Anyappropriate statistical methodology for the analysis of compositional time series musttake into account the constraints which are not allowed for by the usual statisticaltechniques available for analysing multivariate time series. One general approach toanalyzing compositional time series consists in the application of an initial transform tobreak the positive and unit sum constraints, followed by the analysis of the transformedtime series using multivariate ARIMA models. In this paper we discuss the use of theadditive log-ratio, centred log-ratio and isometric log-ratio transforms. We also presentresults from an empirical study designed to explore how the selection of the initialtransform affects subsequent multivariate ARIMA modelling as well as the quality ofthe forecasts