44 resultados para Hybrid Auctions
Resumo:
The Bank of Spain uses a unique auction format to sell government bonds, which can be seen as a hybrid of a uniform and a discriminatory auction. For winning bids above the average winning bid, buyers are charged the average winning bid, otherwise they pay their respective bids. We report on an experiment that compares this auction format to the discriminatory format, used in most other countries, and to the uniform format. Our design is based on a common value model with multi-unit supply and two-unit demand. The results show significantly higher revenue with the Spanish and the uniform formats than with the discriminatory one, while volatility of prices over time is significantly lower in the discriminatory format than in the Spanish and uniform cases. Actual price dispersion is significantly larger in the discriminatory than in the Spanish. Our data also exhibit the use of bid-spreading strategies in all three designs.
Resumo:
This paper contributes to the study of tacit collusion by analyzing infinitely repeated multiunit uniform price auctions in a symmetric oligopoly with capacity constrained firms. Under both the Market Clearing and Maximum Accepted Price rules of determining the uniform price, we show that when each firm sets a price-quantity pair specifying the firm's minimum acceptable price and the maximum quantity the firm is willing to sell at this price, there exists a range of discount factors for which the monopoly outcome with equal sharing is sustainable in the uniform price auction, but not in the corresponding discriminatory auction. Moreover, capacity withholding may be necessary to sustain this out-come. We extend these results to the case where firms may set bids that are arbitrary step functions of price-quantity pairs with any finite number of price steps. Surprisingly, under the Maximum Accepted Price rule, firms need employ no more than two price steps to minimize the value of the discount factor
Resumo:
We report on a series of experiments that examine bidding behavior in first-price sealed bid auctions with symmetric and asymmetric bidders. To study the extent of strategic behavior, we use an experimental design that elicits bidders' complete bid functions in each round (auction) of the experiment. In the aggregate, behavior is consistent with the basic equilibrium predictions for risk neutral or homogenous risk averse bidders (extent of bid shading, average seller's revenues and deviations from equilibrium). However, when we look at the extent of best reply behavior and the shape of bid functions, we find that individual behavior is not in line with the received equilibrium models, although it exhibits strategic sophistication.
Resumo:
We report on a series of experiments that test the effects of an uncertain supply on the formation of bids and prices in sequential first-price auctions with private-independent values and unit-demands. Supply is assumed uncertain when buyers do not know the exact number of units to be sold (i.e., the length of the sequence). Although we observe a non-monotone behavior when supply is certain and an important overbidding, the data qualitatively support our price trend predictions and the risk neutral Nash equilibrium model of bidding for the last stage of a sequence, whether supply is certain or not. Our study shows that behavior in these markets changes significantly with the presence of an uncertain supply, and that it can be explained by assuming that bidders formulate pessimistic beliefs about the occurrence of another stage.
Resumo:
We study the outcomes of experimental multi-unit uniform and discriminatory auctions with demand uncertainty. Our study is motivated by the ongoing debate about market design in the electricity industry. Our main aim is to compare the effect of asymmetric demand-information between sellers on the performance of the two auction institutions. In our baseline conditions all sellers have the same information, whereas in our treatment conditions some sellers have better information than others. In both information conditions we find that average transaction prices and price volatility are not significantly different under the two auction institutions. However, when there is asymmetric information among sellers the discriminatory auction is significantly less efficient. These results are not in line with the typical arguments made in favor of discriminatory pricing in electricity industries; namely, lower consumer prices and less price volatility. Moreover, our results provide some indication that discriminatory auctions reduce technical efficiency relative to uniform auctions.
Resumo:
In this paper, we present a first approach to evolve a cooperative behavior in ad hoc networks. Since wireless nodes are energy constrained, it may not be in the best interest of a node to always accept relay requests. On the other hand, if all nodes decide not to expend energy in relaying, then network throughput will drop dramatically. Both these extreme scenarios are unfavorable to the interests of a user. In this paper we deal with the issue of user cooperation in ad hoc networks by developing the algorithm called Generous Tit-For-Tat. We assume that nodes are rational, i.e., their actions are strictly determined by self-interest, and that each node is associated with a minimum lifetime constraint. Given these lifetime constraints and the assumption of rational behavior, we study the added behavior of the network.
Resumo:
Land cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims to establish an efficient classification approach to accurately map all broad land cover classes in a large, heterogeneous tropical area of Bolivia, as a basis for further studies (e.g., land cover-land use change). Specifically, we compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbour and four different support vector machines - SVM), and hybrid classifiers, using both hard and soft (fuzzy) accuracy assessments. In addition, we test whether the inclusion of a textural index (homogeneity) in the classifications improves their performance. We classified Landsat imagery for two dates corresponding to dry and wet seasons and found that non-parametric, and particularly SVM classifiers, outperformed both parametric and hybrid classifiers. We also found that the use of the homogeneity index along with reflectance bands significantly increased the overall accuracy of all the classifications, but particularly of SVM algorithms. We observed that improvements in producer’s and user’s accuracies through the inclusion of the homogeneity index were different depending on land cover classes. Earlygrowth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land cover classes were mapped with producer’s and user’s accuracies of around 90%. Our approach seems very well suited to accurately map land cover in tropical regions, thus having the potential to contribute to conservation initiatives, climate change mitigation schemes such as REDD+, and rural development policies.
Resumo:
The two main alternative methods used to identify key sectors within the input-output approach, the Classical Multiplier method (CMM) and the Hypothetical Extraction method (HEM), are formally and empirically compared in this paper. Our findings indicate that the main distinction between the two approaches stems from the role of the internal effects. These internal effects are quantified under the CMM while under the HEM only external impacts are considered. In our comparison, we find, however that CMM backward measures are more influenced by within-block effects than the proposed forward indices under this approach. The conclusions of this comparison allow us to develop a hybrid proposal that combines these two existing approaches. This hybrid model has the advantage of making it possible to distinguish and disaggregate external effects from those that a purely internal. This proposal has also an additional interest in terms of policy implications. Indeed, the hybrid approach may provide useful information for the design of ''second best'' stimulus policies that aim at a more balanced perspective between overall economy-wide impacts and their sectoral distribution.
Resumo:
Proposes a behavior-based scheme for high-level control of autonomous underwater vehicles (AUVs). Two main characteristics can be highlighted in the control scheme. Behavior coordination is done through a hybrid methodology, which takes in advantages of the robustness and modularity in competitive approaches, as well as optimized trajectories
Resumo:
We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos
Resumo:
This paper proposes a hybrid coordination method for behavior-based control architectures. The hybrid method takes advantages of the robustness and modularity in competitive approaches as well as optimized trajectories in cooperative ones. This paper shows the feasibility of applying this hybrid method with a 3D-navigation to an autonomous underwater vehicle (AUV). The behaviors are learnt online by means of reinforcement learning. A continuous Q-learning implemented with a feed-forward neural network is employed. Realistic simulations were carried out. The results obtained show the good performance of the hybrid method on behavior coordination as well as the convergence of the behaviors
Resumo:
The work presented in this paper belongs to the power quality knowledge area and deals with the voltage sags in power transmission and distribution systems. Propagating throughout the power network, voltage sags can cause plenty of problems for domestic and industrial loads that can financially cost a lot. To impose penalties to responsible party and to improve monitoring and mitigation strategies, sags must be located in the power network. With such a worthwhile objective, this paper comes up with a new method for associating a sag waveform with its origin in transmission and distribution networks. It solves this problem through developing hybrid methods which hire multiway principal component analysis (MPCA) as a dimension reduction tool. MPCA reexpresses sag waveforms in a new subspace just in a few scores. We train some well-known classifiers with these scores and exploit them for classification of future sags. The capabilities of the proposed method for dimension reduction and classification are examined using the real data gathered from three substations in Catalonia, Spain. The obtained classification rates certify the goodness and powerfulness of the developed hybrid methods as brand-new tools for sag classification
Resumo:
Piecewise linear models systems arise as mathematical models of systems in many practical applications, often from linearization for nonlinear systems. There are two main approaches of dealing with these systems according to their continuous or discrete-time aspects. We propose an approach which is based on the state transformation, more particularly the partition of the phase portrait in different regions where each subregion is modeled as a two-dimensional linear time invariant system. Then the Takagi-Sugeno model, which is a combination of local model is calculated. The simulation results show that the Alpha partition is well-suited for dealing with such a system
Resumo:
Business processes designers take into account the resources that the processes would need, but, due to the variable cost of certain parameters (like energy) or other circumstances, this scheduling must be done when business process enactment. In this report we formalize the energy aware resource cost, including time and usage dependent rates. We also present a constraint programming approach and an auction-based approach to solve the mentioned problem including a comparison of them and a comparison of the proposed algorithms for solving them