19 resultados para Back Injuries
Resumo:
This paper analyses the impact of a series of managerial and organisational factors on occupational injuries. These consist of occupational safety measures, as regards both the intensity and the orientation of risk prevention in companies, and the adoption of certain work organisation practices, quality management and the use of flexible production technologies. We estimate a negative binomial regression based on a sample of 213 Spanish industrial establishments, defining a constant random parameter to take account of non-observable heterogeneity. Our results show that occupational safety measures, the intensive use of quality management tools and the empowerment of workers all help to reduce the number of injuries. We have also confirmed the presence of synergies between the organisational factors analysed and the development of an occupational safety strategy featuring participation and the extension of prevention to all levels of the organisation.
Resumo:
Recent empirical evidence has found that employment services and small-business assistance programmes are often successful at getting the unemployed back to work. Â One important concern of policy makers is to decide which of these two programmes is more effective and for whom. Â Using unusually rich (for transition economies) survey data and matching methods, I evaluate the relative effectiveness of these two programmes in Romania. Â While I find that employment services (ES) are, on average, more successful than a small-business assistance programme (SBA), estimation of heterogeneity effects reveals that, compared to non-participation, ES are effective for workers with little access to informal search channels, and SBA works for less-qualified workers and those living in rural areas. Â When comparing ES to SBA, I find that ES tend to be more efficient than SBA for workers without a high-school degree, and that the opposite holds for the more educated workers.
Resumo:
This study engages with the debate over the mortality crises in the former Soviet Union and Central and Eastern Europe by 1) considering at length and as complementary to each other the two most prominent explanations for the post-communist mortality crisis, stress and alcohol consumption; 2) emphasizing the importance of context by exploiting systematic similarities and differences across the region. Differential mortality trajectories reveal three country groups that cluster both spatially and in terms of economic transition experiences. The first group are the countries furthest west in which mortality rates increased minimally after the transition began. The second group experienced a severe increase in mortality rates in the early 1990s, but recovered previous levels within a few years. These countries are located peripherally to Russia and its nearest neighbours. The final group consists of countries that experienced two mortality increases or in which mortality levels had not recovered to pre-transition levels well into the 21st century. Cross-sectional time-series data analyses of men’s and women’s age and cause-specific death rates reveal that the clustering of these countries and their mortality trajectories can be partially explained by the economic context, which is argued to be linked to stress and alcohol consumption. Above and beyond many basic differences in the country groups that are held constant—including geographically and historically shared cultural, lifestyle and social characteristics—poor economic conditions account for a remarkably consistent share of excess age-specific and cause-specific deaths.
Resumo:
Blunt chest traumas are a clinical challenge, both for diagnosis and treatment. The use ofCardiovascular Magnetic Resonance can play a major role in this setting. We present two cases: a12-year-old boy and 45-year-old man. Late gadolinium enhancement imaging enabled visualizationof myocardial damage resulting from the trauma.
Resumo:
We investigate identifiability issues in DSGE models and their consequences for parameter estimation and model evaluation when the objective function measures the distance between estimated and model impulse responses. We show that observational equivalence, partial and weak identification problems are widespread, that they lead to biased estimates, unreliable t-statistics and may induce investigators to select false models. We examine whether different objective functions affect identification and study how small samples interact with parameters and shock identification. We provide diagnostics and tests to detect identification failures and apply them to a state-of-the-art model.
Resumo:
We derive the back reaction on the gravitational field of a straight cosmic string during its formation due to the gravitational coupling of the string to quantum matter fields. A very simple model of string formation is considered. The gravitational field of the string is computed in the linear approximation. The vacuum expectation value of the stress tensor of a massless scalar quantum field coupled to the string gravitational field is computed to one loop order. Finally, the back-reaction effect is obtained by solving perturbatively the semiclassical Einsteins equations.
Resumo:
We study the sensitivity limits of a broadband gravitational-wave detector based on dual resonators such as nested spheres. We determine both the thermal and back-action noises when the resonators displacements are read out with an optomechanical sensor. We analyze the contributions of all mechanical modes, using a new method to deal with the force-displacement transfer functions in the intermediate frequency domain between the two gravitational-wave sensitive modes associated with each resonator. This method gives an accurate estimate of the mechanical response, together with an evaluation of the estimate error. We show that very high sensitivities can be reached on a wide frequency band for realistic parameters in the case of a dual-sphere detector.
Resumo:
Back-focal-plane interferometry is used to measure displacements of optically trapped samples with very high spatial and temporal resolution. However, the technique is closely related to a method that measures the rate of change in light momentum. It has long been known that displacements of the interference pattern at the back focal plane may be used to track the optical force directly, provided that a considerable fraction of the light is effectively monitored. Nonetheless, the practical application of this idea has been limited to counter-propagating, low-aperture beams where the accurate momentum measurements are possible. Here, we experimentally show that the connection can be extended to single-beam optical traps. In particular, we show that, in a gradient trap, the calibration product κ·β (where κ is the trap stiffness and 1/β is the position sensitivity) corresponds to the factor that converts detector signals into momentum changes; this factor is uniquely determined by three construction features of the detection instrument and does not depend, therefore, on the specific conditions of the experiment. Then, we find that force measurements obtained from back-focal-plane displacements are in practice not restricted to a linear relationship with position and hence they can be extended outside that regime. Finally, and more importantly, we show that these properties are still recognizable even when the system is not fully optimized for light collection. These results should enable a more general use of back-focal-plane interferometry whenever the ultimate goal is the measurement of the forces exerted by an optical trap.
Resumo:
Back-focal-plane interferometry is used to measure displacements of optically trapped samples with very high spatial and temporal resolution. However, the technique is closely related to a method that measures the rate of change in light momentum. It has long been known that displacements of the interference pattern at the back focal plane may be used to track the optical force directly, provided that a considerable fraction of the light is effectively monitored. Nonetheless, the practical application of this idea has been limited to counter-propagating, low-aperture beams where the accurate momentum measurements are possible. Here, we experimentally show that the connection can be extended to single-beam optical traps. In particular, we show that, in a gradient trap, the calibration product κ·β (where κ is the trap stiffness and 1/β is the position sensitivity) corresponds to the factor that converts detector signals into momentum changes; this factor is uniquely determined by three construction features of the detection instrument and does not depend, therefore, on the specific conditions of the experiment. Then, we find that force measurements obtained from back-focal-plane displacements are in practice not restricted to a linear relationship with position and hence they can be extended outside that regime. Finally, and more importantly, we show that these properties are still recognizable even when the system is not fully optimized for light collection. These results should enable a more general use of back-focal-plane interferometry whenever the ultimate goal is the measurement of the forces exerted by an optical trap.
Resumo:
A major problem with holographic optical tweezers (HOTs) is their incompatibility with laser-based position detection methods, such as back-focal-plane interferometry (BFPI). The alternatives generally used with HOTs, like high-speed video tracking, do not offer the same spatial and temporal bandwidths. This has limited the use of this technique in precise quantitative experiments. In this paper, we present an optical trap design that combines digital holography and back-focal-plane displacement detection. We show that, with a particularly simple setup, it is possible to generate a set of multiple holographic traps and an additional static non-holographic trap with orthogonal polarizations and that they can be, therefore, easily separated for measuring positions and forces with the high positional and temporal resolutions of laser-based detection. We prove that measurements from both polarizations contain less than 1% crosstalk and that traps in our setup are harmonic within the typical range. We further tested the instrument in a DNA stretching experiment and we discuss an interesting property of this configuration: the small drift of the differential signal between traps.
Resumo:
This report details the port interconnection of two subsystems: a power electronics subsystem (a back-to-back AC/AC converter (B2B), coupled to a phase of the power grid), and an electromechanical subsystem (a doubly-fed induction machine (DFIM), coupled mechanically to a flywheel and electrically to the power grid and to a local varying load). Both subsystems have been essentially described in previous reports (deliverables D 0.5 and D 4.3.1), although some previously unpublished details are presented here. The B2B is a variable structure system (VSS), due to the presence of control-actuated switches: however from a modelling and simulation, as well as a control-design, point of view, it is sensible to consider modulated transformers (MTF in the bond-graph language) instead of the pairs of complementary switches. The port-Hamiltonian models of both subsystems are presents and coupled through a power-preserving interconnection, and the Hamiltonian description of the whole system is obtained; detailed bond-graphs of all the subsystems and the complete system are provided.
Resumo:
This paper describes the port interconnection of two subsystems: a power electronics subsystem (a back-to-back AC/CA converter (B2B), coupled to a phase of the power grid), and an electromechanical subsystem (a doubly-fed induction machine (DFIM). The B2B is a variable structure system (VSS), due to presence of control-actuated switches: however, from a modelling simulation, as well as a control-design, point of view, it is sensible to consider modulated transformers (MTF in the bond graph language) instead of the pairs of complementary switches. The port-Hamiltonian models of both subsystems are presented and, using a power-preserving interconnection, the Hamiltonian description of the whole system is obtained; detailed bond graphs of all subsystems and the complete system are also provided. Using passivity-based controllers computed in the Hamiltonian formalism for both subsystems, the whole model is simulated; simulations are run to rest the correctness and efficiency of the Hamiltonian network modelling approach used in this work.
Resumo:
The combined action of nisin and lactacin F, two bacteriocins produced by lactic acid bacteria, is additive. In this report, the basis of this effect is examined. Channels formed by lactacin F were studied by experiments using planar lipid bilayers, and bactericidal effects were analyzed by flow cytometry. Lactacin F produced pores with a conductance of 1 ns in black lipid bilayers in 1 mM KClat 10 mV at 20°C. Pore formation was strongly dependent on voltage. Although lactacin F formed pores at very low potential (10 mV), the dependence was exponentialabov e 40 mV. The injuries induced by nisin and lactacin F in the membranes of Lactobacillus helveticus produced different flow cytometric profiles. Probably, when both bacteriocins are present, each acts separately; their cooperation may be due to an increase in the number of single membrane injuries
Resumo:
Nowadays, one of the most important challenges to enhance the efficiency of thin film silicon solar cells is to increase the short circuit intensity by means of optical confinement methods, such as textured back-reflector structures. In this work, two possible textured structures to be used as back reflectors for n-i-p solar cells have been optically analyzed and compared to a smooth one by using a system which is able to measure the angular distribution function (ADF) of the scattered light in a wide spectral range (350-1000 nm). The accurate analysis of the ADF data corresponding to the reflector structures and to the μc-Si:H films deposited onto them allows the optical losses due to the reflector absorption and its effectiveness in increasing light absorption in the μc-Si:H layer, mainly at long wavelengths, to be quantified.