17 resultados para Stress Wave Force Balances

em Martin Luther Universitat Halle Wittenberg, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Naturwiss., Diss., 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transmission-line supertheory, generalized transmission-line theory, radiation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spiral wave,feedback mechanism, photosensitive BZ reaction, excitable media, drift vetor field plot, planewave approximation, BZ, nonlinear

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural nitric oxide synthase, neuroendocrine stress response, forced swimming, nNOS KO mice, hypothalamus, adrenal gland

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction separation processes, reactive distillation, chromatographic reactor, equilibrium theory, nonlinear waves, process control, observer design, asymptoticaly exact input/output-linearization

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prenatal stress, rodent, limbic system, neuronal development, dendritic spines, sex difference

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serotonin, dopamine, parental separation, microdialysis, methylphenidate

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work focuses on the modeling and numerical approximations of population balance equations (PBEs) for the simulation of different phenomena occurring in process engineering. The population balance equation (PBE) is considered to be a statement of continuity. It tracks the change in particle size distribution as particles are born, die, grow or leave a given control volume. In the population balance models the one independent variable represents the time, the other(s) are property coordinate(s), e.g., the particle volume (size) in the present case. They typically describe the temporal evolution of the number density functions and have been used to model various processes such as granulation, crystallization, polymerization, emulsion and cell dynamics. The semi-discrete high resolution schemes are proposed for solving PBEs modeling one and two-dimensional batch crystallization models. The schemes are discrete in property coordinates but continuous in time. The resulting ordinary differential equations can be solved by any standard ODE solver. To improve the numerical accuracy of the schemes a moving mesh technique is introduced in both one and two-dimensional cases ...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Naturwiss., Diss., 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2014