5 resultados para Repeated Averages of Real-Valued Functions
em Martin Luther Universitat Halle Wittenberg, Germany
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2014
Resumo:
The classical central limit theorem states the uniform convergence of the distribution functions of the standardized sums of independent and identically distributed square integrable real-valued random variables to the standard normal distribution function. While first versions of the central limit theorem are already due to Moivre (1730) and Laplace (1812), a systematic study of this topic started at the beginning of the last century with the fundamental work of Lyapunov (1900, 1901). Meanwhile, extensions of the central limit theorem are available for a multitude of settings. This includes, e.g., Banach space valued random variables as well as substantial relaxations of the assumptions of independence and identical distributions. Furthermore, explicit error bounds are established and asymptotic expansions are employed to obtain better approximations. Classical error estimates like the famous bound of Berry and Esseen are stated in terms of absolute moments of the random summands and therefore do not reflect a potential closeness of the distributions of the single random summands to a normal distribution. Non-classical approaches take this issue into account by providing error estimates based on, e.g., pseudomoments. The latter field of investigation was initiated by work of Zolotarev in the 1960's and is still in its infancy compared to the development of the classical theory. For example, non-classical error bounds for asymptotic expansions seem not to be available up to now ...
Resumo:
Wireless mesh networks present an attractive communication solution for various research and industrial projects. However, in many cases, the appropriate preliminary calculations which allow predicting the network behavior have to be made before the actual deployment. For such purposes, network simulation environments emulating the real network operation are often used. Within this paper, a behavior comparison of real wireless mesh network (based on 802.11s amendment) and the simulated one has been performed. The main objective of this work is to measure performance parameters of a real 802.11s wireless mesh network (average UDP throughput and average one-way delay) and compare the derived results with characteristics of a simulated wireless mesh network created with the NS-3 network simulation tool. Then, the results from both networks are compared and the corresponding conclusion is made. The corresponding results were derived from simulation model and real-worldtest-bed, showing that the behavior of both networks is similar. It confirms that the NS-3 simulation model is accurate and can be used in further research studies.
Resumo:
The following article describes an approach covering the variety of opinions and uncertainties of estimates within the chosen technique of decision support. Mathematical operations used for assessment of options are traced to operations of working with functions that are used for assessment of possible options of decision-making. Approach proposed could be used within any technique of decision support based on elementary mathematical operations. In this article the above-mentioned approach is described under analytical hierarchy process.
Resumo:
Since the specific heat transfer coefficient (UA) and the volumetric mass transfer coefficient (kLa) play an important role for the design of biotechnological processes, different techniques were developed in the past for the determination of these parameters. However, these approaches often use imprecise dynamic methods for the description of stationary processes and are limited towards scale and geometry of the bioreactor. Therefore, the aim of this thesis was to develop a new method, which overcomes these restrictions. This new approach is based on a permanent production of heat and oxygen by the constant decomposition of hydrogen peroxide in continuous mode. Since the degradation of H2O2 at standard conditions only takes place by the support of a catalyst, different candidates were investigated for their potential (regarding safety issues and reaction kinetic). Manganese-(IV)-oxide was found to be suitable. To compensate the inactivation of MnO2, a continuous process with repeated feeds of fresh MnO2 was established. Subsequently, a scale-up was successfully carried out from 100 mL to a 5 litre glass bioreactor (UniVessel®)To show the applicability of this new method for the characterisation of bioreactors, it was compared with common approaches. With the newly established technique as well as with a conventional procedure, which is based on an electrical heat source, specific heat transfer coefficients were measured in the range of 17.1 – 24.8 W/K for power inputs of about 50 – 70 W/L. However, a first proof of concept regarding the mass transfer showed no constant kLa for different dilution rates up to 0.04 h-1.Based on this, consecutive studies concerning the mass transfer should be made with higher volume flows, due to more even inflow rates. In addition, further experiments are advisable, to analyse the heat transfer in single-use bioreactors and in larger common systems.