3 resultados para Network-on-Chip (NoC)

em Martin Luther Universitat Halle Wittenberg, Germany


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drying of porous media, pore network, pore structure, capillary forces, viscous forces, drying kinetics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper devotes to evaluation of performance bottlenecks and algorithm deficiencies in the area of contemporary reliable multicast networking. Hereby, the impact of packet delay jitter on the end-to-end performance of multicast IP data transport is investigated. A series of tests with two most significant open-source implementations of reliable multicast is performed and analyzed. These are: UDP-based File Transfer Protocol (UFTP) and NACK-oriented Reliable multicast (NORM). Tests were targeted to simulate scenario of content distribution in WAN – sized Content Delivery Networks (CDN). Then, results were grouped and averaged, by round trip time and packet losses. This enabled us to see jitter influence independently on round trip time(RTT) and packet loss rates. Revealed jitter influence for different network conditions. Confirmed, that appearance of even small jitter causes significant data rate reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless mesh networks present an attractive communication solution for various research and industrial projects. However, in many cases, the appropriate preliminary calculations which allow predicting the network behavior have to be made before the actual deployment. For such purposes, network simulation environments emulating the real network operation are often used. Within this paper, a behavior comparison of real wireless mesh network (based on 802.11s amendment) and the simulated one has been performed. The main objective of this work is to measure performance parameters of a real 802.11s wireless mesh network (average UDP throughput and average one-way delay) and compare the derived results with characteristics of a simulated wireless mesh network created with the NS-3 network simulation tool. Then, the results from both networks are compared and the corresponding conclusion is made. The corresponding results were derived from simulation model and real-worldtest-bed, showing that the behavior of both networks is similar. It confirms that the NS-3 simulation model is accurate and can be used in further research studies.