7 resultados para Minimal Hausdor Frames
em Martin Luther Universitat Halle Wittenberg, Germany
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2014
Resumo:
Michael Friebe, editor ; Otto-von-Guericke-Universität Magdeburg, Institut für Medizintechnik, Lehrstuhl Kathetertechnologie und bildgesteuerte Therapie (INKA - Intelligente Katheter), Forschungscampus STIMULATE (Solution Centre for Image Guided Local Therapies)
Resumo:
Magdeburg, Univ., Medizin. Fakultät, Diss., 2007
Resumo:
Magdeburg, Univ., Med. Fak., Diss., 2012
Resumo:
In this paper we investigate various algorithms for performing Fast Fourier Transformation (FFT)/Inverse Fast Fourier Transformation (IFFT), and proper techniques for maximizing the FFT/IFFT execution speed, such as pipelining or parallel processing, and use of memory structures with pre-computed values (look up tables -LUT) or other dedicated hardware components (usually multipliers). Furthermore, we discuss the optimal hardware architectures that best apply to various FFT/IFFT algorithms, along with their abilities to exploit parallel processing with minimal data dependences of the FFT/IFFT calculations. An interesting approach that is also considered in this paper is the application of the integrated processing-in-memory Intelligent RAM (IRAM) chip to high speed FFT/IFFT computing. The results of the assessment study emphasize that the execution speed of the FFT/IFFT algorithms is tightly connected to the capabilities of the FFT/IFFT hardware to support the provided parallelism of the given algorithm. Therefore, we suggest that the basic Discrete Fourier Transform (DFT)/Inverse Discrete Fourier Transform (IDFT) can also provide high performances, by utilizing a specialized FFT/IFFT hardware architecture that can exploit the provided parallelism of the DFT/IDF operations. The proposed improvements include simplified multiplications over symbols given in polar coordinate system, using sinе and cosine look up tables, and an approach for performing parallel addition of N input symbols.
Resumo:
In this paper we investigate various algorithms for performing Fast Fourier Transformation (FFT)/Inverse Fast Fourier Transformation (IFFT), and proper techniquesfor maximizing the FFT/IFFT execution speed, such as pipelining or parallel processing, and use of memory structures with pre-computed values (look up tables -LUT) or other dedicated hardware components (usually multipliers). Furthermore, we discuss the optimal hardware architectures that best apply to various FFT/IFFT algorithms, along with their abilities to exploit parallel processing with minimal data dependences of the FFT/IFFT calculations. An interesting approach that is also considered in this paper is the application of the integrated processing-in-memory Intelligent RAM (IRAM) chip to high speed FFT/IFFT computing. The results of the assessment study emphasize that the execution speed of the FFT/IFFT algorithms is tightly connected to the capabilities of the FFT/IFFT hardware to support the provided parallelism of the given algorithm. Therefore, we suggest that the basic Discrete Fourier Transform (DFT)/Inverse Discrete Fourier Transform (IDFT) can also provide high performances, by utilizing a specialized FFT/IFFT hardware architecture that can exploit the provided parallelism of the DFT/IDF operations. The proposed improvements include simplified multiplications over symbols given in polar coordinate system, using sinе and cosine look up tables,and an approach for performing parallel addition of N input symbols.
Resumo:
The present Bachelor thesis gives an overview of the influence of some starch esters (acetylated distarch phosphate (E 1414) and adipate (E1422)) as stabilizing agents in a salmon-emulsion-cream. The aim of this work was the development of an optimal recipe. Different concentrations of starches were used in combination with xanthan gum. The methods were used to describe the rheological, microphotographical, microbiological, chemical and sensorial characteristics of the spread. The analysis of determination and development of droplet size showed a significant reduction in coalescence process. Rheological experiments indicated that high concentrations of E 1414 are necessary getting a slightly higher viscosity than in case of the E 1422 creams. The microbiological results showed minimal differences. All tested samples showed high stability against oxidation. For the use of a new recipe acetylated distarch adipate is the better choice in this case.