2 resultados para Markov chains hidden Markov models Viterbi algorithm Forward-Backward algorithm maximum likelihood
em Martin Luther Universitat Halle Wittenberg, Germany
Resumo:
This master thesis deals with determining of innovative projects "viability". "Viability" is the probability of innovative project being implemented. Hidden Markov Models are used for evaluation of this factor. The problem of determining parameters of model, which produce given data sequence with the highest probability, are solving in this research. Data about innovative projects contained in reports of Russian programs "UMNIK", "START" and additional data obtained during study are used as input data for determining of model parameters. The Baum-Welch algorithm which is one implementation of expectation-maximization algorithm is used at this research for calculating model parameters. At the end part of the master thesis mathematical basics for practical implementation are given (in particular mathematical description of the algorithm and implementation methods for Markov models).
Resumo:
Questions of "viability" evaluation of innovation projects are considered in this article. As a method of evaluation Hidden Markov Models are used. Problem of determining model parameters, which reproduce test data with highest accuracy are solving. For training the model statistical data on the implementation of innovative projects are used. Baum-Welch algorithm is used as a training algorithm.