5 resultados para Markov chains, uniformization, inexact methods, relaxed matrix-vector
em Martin Luther Universitat Halle Wittenberg, Germany
Resumo:
Simulation, modelling, proxels, PDEs, Markov chains, Petri nets, stochastic, performability, transient analysis
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2013
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2013
Resumo:
This master thesis deals with determining of innovative projects "viability". "Viability" is the probability of innovative project being implemented. Hidden Markov Models are used for evaluation of this factor. The problem of determining parameters of model, which produce given data sequence with the highest probability, are solving in this research. Data about innovative projects contained in reports of Russian programs "UMNIK", "START" and additional data obtained during study are used as input data for determining of model parameters. The Baum-Welch algorithm which is one implementation of expectation-maximization algorithm is used at this research for calculating model parameters. At the end part of the master thesis mathematical basics for practical implementation are given (in particular mathematical description of the algorithm and implementation methods for Markov models).
Resumo:
Research analysis of electrocardiograms (ECG) today is carried out mostly using time depending signals of different leads shown in the graphs. Definition of ECG parameters is performed by qualified personnel, and requiring particular skills. To support decoding the cardiac depolarization phase of ECG there are methods to analyze space-time convolution charts in three dimensions where the heartbeat is described by the trajectory of its electrical vector. Based on this, it can be assumed that all available options of the classical ECG analysis of this time segment can be obtained using this technique. Investigated ECG visualization techniques in three dimensions combined with quantitative methods giving additional features of cardiac depolarization and allow a better exploitation of the information content of the given ECG signals.