6 resultados para Discovery activities
em Martin Luther Universitat Halle Wittenberg, Germany
Resumo:
Propositionalization, Inductive Logic Programming, Multi-Relational Data Mining
Resumo:
Membrane reactor, reactive membrane separation, arrheotrope, azeotrope, dusty gas model, esterification, residue curve map, distillation, kinetics, singular point, bifurcation
Resumo:
Category, frequency contour, monkey, auditory cortex, neuron, spike
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2010
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2013
Resumo:
Die Preise für Speicherplatz fallen stetig, da verwundert es nicht, dass Unternehmen riesige Datenmengen anhäufen und sammeln. Diese immensen Datenmengen müssen jedoch mit geeigneten Methoden analysiert werden, um für das Unternehmen überlebensnotwendige Muster zu identifizieren. Solche Muster können Probleme aber auch Chancen darstellen. In jedem Fall ist es von größter Bedeutung, rechtzeitig diese Muster zu entdecken, um zeitnah reagieren zu können. Um breite Nutzerschichten anzusprechen, müssen Analysemethoden ferner einfach zu bedienen sein, sofort Rückmeldungen liefern und intuitive Visualisierungen anbieten. Ich schlage in der vorliegenden Arbeit Methoden zur Visualisierung und Filterung von Assoziationsregeln basierend auf ihren zeitlichen Änderungen vor. Ich werde lingustische Terme (die durch Fuzzymengen modelliert werden) verwenden, um die Historien von Regelbewertungsmaßen zu charakterisieren und so eine Ordnung von relevanten Regeln zu generieren. Weiterhin werde ich die vorgeschlagenen Methoden auf weitereModellarten übertragen, die Software-Plattformvorstellen, die die Analysemethoden dem Nutzer zugänglich macht und schließlich empirische Auswertungen auf Echtdaten aus Unternehmenskooperationen vorstellen, die die Wirksamkeit meiner Vorschläge belegen.