3 resultados para fish bone
em Galway Mayo Institute of Technology, Ireland
Resumo:
Surgical procedures such as osteotomy and hip replacement involve the cutting of bone with the aid of various manual and powered cutting instruments including manual and powered bone saws. The basic mechanics of bone sawing processes are consistent with most other material sawing processes such as for wood or metal. Frictional rubbing between the blade of the saw and the bone results in the generation of localised heating of the cut bone. Research studies have been carried out which consider the design of the bone saw which deals with specifics of the saw teeth geometry and research which examines the effect of drilling operations on heating of the bone has shown that elevated temperatures will occur from frictional overheating. This overheating in localised areas is known to have an impact on the rate of healing of the bone post operation and the sharpness life of the blade. The purpose of this study was to measure the temperature at three zones at fixed intervals of 3mm, 6mm, and 9mm away from the cutting zone. It should be noted that it was the first time that this measurement technique was used to measure the temperature gradient through the bone specimen thereby establishing the extent to which clinicians are experiencing thermal injury during sawing of bone while using a reciprocating saw. The effect of various cutting feed rate on temperature elevation was also investigated in this research. The results showed that there will be a region of bone at least 9mm either side of the cutting blade experiencing thermal injury as temperatures in this region exceeded the threshold temperature of 44°C for necrosis (cell death).
Resumo:
Finfish pots have emerged as a “responsible” gear, when used in combination with conservational and technical measures to sustain fisheries. Previous trials in Irish waters have offered no published reported data and so three designs tested in the current study provide new information on this gear. The most successful traps in terms of fish catch were rigid steel framed rectangular pots used to target Conger eel. Although commercial yield was low (0.2 per trap haul), potential existed for a viable pot fishery. Deployment and storage of Norwegian floating pots was conducted with relative ease but performance in the water was poor resulting in loss of gear. Catch returns were notable even though effort was restricted as mega-faunal by-catch was a problem, which lead to ending this trial. From these initial trials it was evident that catch rates were low compared to established Norwegian fisheries (3.6 cod per pot), which resulted in the utilisation of pots, already established in the crustacean fishery, to find species readily accessible to pot capture. Although fished and designed differently, these gears provided an opportunity to establish the benefits of pot fishing to fish quality and to determine the effects on by-catch. The fishing effects of three catching methods (pots, angling and trawl) and the effects of air exposure on the physiological status of a common by-catch, the lesser spotted dogfish Scyliorhinus canícula (L.) were examined using a range of physiological biomarkers (plasma catecholamine, glucose, lactate, muscle pH and muscle lactate). Physiological responses of fish to an emersion stress regime resulted in a significant metabolic disturbance in groups, but may not have weakened the overall health of these fish, as signified in the revival of some metabolites. Plasma glucose and lactate concentrations did not however recovery to baseline levels indicating that to achieve an accurate profile, responses should be determined by a suite of biomarkers. Responses did not demonstrate that samples from the pots were significantly less stressed than for the other two methods; angling and trawling, which are in contrast to many other studies. Employment of finfish potting therefore in Irish waters needs further consideration before further promotion as a more responsible method to supplement or replace established techniques.
Resumo:
Surgeons may use a number of cutting instruments such as osteotomes and chisels to cut bone during an operative procedure. The initial loading of cortical bone during the cutting process results in the formation of microcracks in the vicinity of the cutting zone with main crack propagation to failure occuring with continued loading. When a material cracks, energy is emitted in the form of Acoustic Emission (AE) signals that spread in all directions, therefore, AE transducers can be used to monitor the occurrence and development of microcracking and crack propagation in cortical bone. In this research, number of AE signals (hits) and related parameters including amplitude, duration and absolute energy (abs-energy) were recorded during the indentation cutting process by a wedge blade on cortical bone specimens. The cutting force was also measured to correlate between load-displacement curves and the output from the AE sensor. The results from experiments show AE signals increase substantially during the loading just prior to fracture between 90% and 100% of maximum fracture load. Furthermore, an amplitude threshold value of 64dB (with approximate abs-energy of 1500 aJ) was established to saparate AE signals associated with microcracking (41 – 64dB) from fracture related signals (65 – 98dB). The results also demonstrated that the complete fracture event which had the highest duration value can be distinguished from other growing macrocracks which did not lead to catastrophic fracture. It was observed that the main crack initiation may be detected by capturing a high amplitude signal at a mean load value of 87% of maximum load and unsteady crack propagation may occur just prior to final fracture event at a mean load value of 96% of maximum load. The author concludes that the AE method is useful in understanding the crack initiation and fracture during the indentation cutting process.