7 resultados para explosive ordnance disposal
em Galway Mayo Institute of Technology, Ireland
Resumo:
Sludge provides valuable nutrients to soil. Application of sludge to land is subject to a number of limitations. Its use as a soil conditioner represents a "beneficial reuse option". Primary and secondary sludge from Dublin city is treated in Ringsend treatment plant where it undergoes thermal drying. This study investigates the feasibility of land application of thermally dried biosolids (TDB) from Ringsend treatment plant.
Resumo:
Construction and demolition waste management is becoming increasingly important on construction sites as landfill space in Ireland is rapidly depleting and waste management costs are rising. Due to these factors waste management plans are seen as a good response to minimising waste on site and this thesis aims to investigate how to implement such a plan on a practical case study as well as investigating the legislation regarding construction and demolition waste along with market availability for the reuse of the waste. Main contractor surveys were also carried out in order to gain a better understanding of current attitudes within the industry and these surveys are analysed in chapter five. A survey was also carried out among sub-contractors but this survey has not been used for this thesis as the study is on-going. The primary aim of this thesis is to examine the waste hierarchy opportunities that are available for construction and demolition waste in Ireland and to examine the effects of management strategies on construction and demolition waste reduction at the project level. A partnership was developed with Carey Developments Ltd in Co. Galway and an analysis of their waste management practices was undertaken. The primary case study will be the ‘Taylors Hill’ project in Co. Galway where work commenced in March, 2012. The secondary aim of the thesis is to develop specific waste minimisation strategies for the company and to develop a training tool kit for use on site.
Resumo:
Recent studies have shown that septic tank systems are a major source of groundwater pollution. Many public health workers feel that the most cri^cal aspect of the use of septic tanks as a means of sewage disposal is the contamination of private water wells with attendant human health hazards. In this study the movement and attenuation of septic tank effluents in a range of soil/overburden types and hydrogeological situations was investigated. The suitability of a number of chemical and biological tracer materials to monitor the movement of septic tank effluent constituents to groundwater sources was also examined. The investigation was divided into three separate but inteiTelated sections. In the first section of the study the movement of septic tank effluent from two soil treatment systems was investigated by direct measurements of soil nutrient concentrations and enteric bacterial numbers in the soil beneath and downgradient of the test systems. Two sites with different soil types and hydrogeological characteristics were used. The results indicated that the attenuation of the effluent in both of the treatment systems was incomplete. Migration of nitrate, ammonium, phosphate and fecal bacteria to a depth of 50 cm beneath the inverts of the distribution tiles was demonstrated on all sampling occasions. The lateral migration of the pollutants was less pronounced, although on occasions high nutrients levels and fecal bacterial numbers were detected at a lateral distance of 4.0 m downgradient of the test systems. There was evidence that the degree and extent of effluent migration was increased after periods of heavy or prolonged rainfall when the attenuating properties of the treatment systems were reduced as a result of saturation of the soil. The second part of the study examined the contamination of groundwaters downgradient of septic tank soil treatment systems. Three test sites were used in the investigation. The sites were chosen because of differences in the thicknesses and nature of the unsaturated zone available for effluent attenuation at each of the locations. A series of groundwater monitoring boreholes were installed downgradient of the test systems at each of the sites and these were sampled regularly to assess the efficiency of the overburden material in reducing the polluting potential of the wastewater. Effluent attenuation in the septic tank treatment systems was shown to be incomplete, resulting in chemical and microbiological contamination of the groundwaters downgradient of the systems. The nature and severity of groundwater contamination was dependent on the composition and thickness of the unsaturated zone and the extent of weathering in the underlying saturated bedrock. The movement of septic tank effluent through soil/overburdens to groundwater sources was investigated by adding a range of chemical and biological tracer materials to the three septic tank systems used in section two of the study. The results demonstrated that a single tracer type cannot be used to accurately monitor the movement of all effluent constituents through soils to groundwater. The combined use of lithium bromide and endospores of Bacillus globigii was found to give an accurate indication of the movement of both the chemical and biological effluent constituents.
Resumo:
This project focuses on the EU Landfill Directive targets for Biodegradable Municipal Waste (BMW) specifically focusing on how the targets will affect Ireland and its waste management infrastructure. Research will consist of reviewing relevant literature, legislation and policies that will provide a comparable between Ireland and other nations. Planning processes which govern both the building structure and running capacities of treatment facilities is also necessary in order to predict amounts of waste diverted from landfill. The efficiency of these treatment plants also requires investigation. Another objective is to research further information on Irelands organic ‘brown’ bin service, this will involve discovering the roll out of bins in the future over a defined time scale as well as the potential amounts of waste that will be collected. Figures received from waste management and waste treatment companies will be combined with figures from the Environmental Protection Agency’s (EPA) annual reports. This will give an indication to past trends and shed light on possible future trends. With this information annul waste volumes consigned to landfill can be calculated and used to determine whether or not Ireland can achieve the EU Landfill Directive targets. Without significant investment in Irelands waste management infrastructure it is unlikely that the targets will be met. Existing waste treatment facilities need to be managed as efficiently as possible. Waste streams must also be managed so waste is shared appropriately between companies and not create a monopolising waste treatment facility. The driving forces behind an efficient waste management infrastructure are government policy and legislation. An overall and efficient waste management strategy must be in place, along with disincentives for landfilling of waste such as the landfill levy. Encouragement and education of the population is the fundamental and first step to achieving the landfill directive targets.
Resumo:
This study analyses the area of construction and demolition waste (C & D W) auditing. The production of C&DW has grown year after year since the Environmental Protection Agency (EPA) first published a report in 1996 which provided data for C&D W quantities for 1995 (EPA, 1996a). The most recent report produced by the EPA is based on data for 2005 (EPA, 2006). This report estimated that the quantity of C&DW produced for that period to be 14 931 486 tonnes. However, this is a ‘data update’ report containing an update on certain waste statistics so any total provided would not be a true reflection of the waste produced for that period. This illustrates that a more construction site-specific form of data is required. The Department of Building and Civil Engineering in the Galway-Mayo Institute of Technology have carried out two recent research projects (Grimes, 2005; Kelly, 2006) in this area, which have produced waste production indicators based on site-specific data. This involved the design and testing of an original auditing tool based on visual characterisation and the application of conversion factors. One of the main recommendations of these studies was to compare this visual characterisation approach with a photogrammetric sorting methodology. This study investigates the application of photogrammetric sorting on a residential construction site in the Galway region. A visual characterisation study is also carried out on the same project to compare the two methodologies and assess the practical application in a construction site environment. Data collected from the waste management contractor on site was also used to provide further evaluation. From this, a set of waste production indicators for new residential construction was produced: □ 50.8 kg/m2 for new residential construction using data provided by the visual characterisation method and the Landfill Levy conversion factors. □ 43 kg/m2 for new residential construction using data provided by the photogrammetric sorting method and the Landfill Levy conversion factors. □ 23.8 kg/m2 for new residential construction using data provided by Waste Management Contractor (WMC). The acquisition of the data from the waste management contractor was a key element for testing of the information produced by the visual characterisation and photogrammetric sorting methods. The actual weight provided by the waste management contractor shows a significant difference between the quantities provided.
Resumo:
There are presently over 182 RBC plants, treating domestic wastewater, in the Republic of Ireland, 136 of which have been installed since 1986. The use of this treatment plant technology, although not new, is becoming increasingly popular. The aim of this research was to assess the effects that a household detergent has on rotating biological contractor treatment plant efficiency. Household detergents contribute phosphorus to the surrounding environment and can also remove beneficial biomass from the disc media. A simple modification was made to a conventional flat disc unit to increase the oxygen transfer of the process. The treatment efficiency of the modified RBC (with aeration cups attached) was assessed against a parallel conventional system, with and without degergent loading. The parameters monitored were chemical oxygen demand (COD), bio-chemical oxygen demand (BOD), nitrates, phosphates, dissolved oxygen, the motors power consumption, pH, and temperature. Some microscopic analysis of the biofilm was also to be carried out. The treatment efficiency of both units was compared, based on COD/BOD removal. The degree of nitrification achievable by both units was also assessed with any fluctuations in pH noted. Monitoring of the phosphorus removal capabilities of both units was undertaken. Relationships between detergent concentrations and COD removal efficiencies were also analysed.
Resumo:
The overall purpose of this study was to develop a thorough inspection regime for onsite wastewater treatment systems, which is practical and could be implemented on all site conditions across the country. With approximately 450,000 onsite wastewater treatment systems in Ireland a risk based methodology is required for site selection. This type of approach will identify the areas with the highest potential risk to human health and the environment and these sites should be inspected first. In order to gain the required knowledge to develop an inspection regime in-depth and extensive research was earned out. The following areas of pertinent interest were examined and reviewed, history of domestic wastewater treatment, relevant wastewater legislation and guidance documents and potential detrimental impacts. Analysis of a questionnaire from a prior study, which assessed the resources available and the types of inspections currently undertaken by Local authorities was carried out. In addition to the analysis of the questionnaire results, interviews were carried out with several experts involved in the area of domestic wastewater treatment. The interview focussed on twelve key questions which were directed towards the expert’s opinions on the vital aspects of developing an inspection regime. The background research, combined with the questionnaire analysis and information from the interviews provided a solid foundation for the development of an inspection regime. Chapter 8 outlines the inspection regime which has been developed for this study. The inspection regime includes a desktop study, consultation with the homeowners, visual site inspection, non-invasive site tests, and inspection of the treatment systems. The general opinion from the interviews carried out, was that a standardised approach for the inspections was necessary. For this reason an inspection form was produced which provides a standard systematic approach for inspectors to follow. This form is displayed in Appendix 3. The development of a risk based methodology for site selection was discussed and a procedure similar in approach to the Geological Survey of Irelands Groundwater Protection Schemes was proposed. The EPA is currently developing a risk based methodology, but it is not available to the general public yet. However, the EPA provided a copy of a paper outlining the key aspects of their methodology. The methodology will use risk maps which take account of the following parameters: housing density, areas with inadequate soil conditions, risk of water pollution through surface and subsurface pathways. Sites identified with having the highest potential risk to human health and the environment shall be inspected first. Based on the research carried out a number of recommendations were made which are outlined in Chapter 10. The principle conclusion was that, if these systems fail to operate satisfactorily, home owners need to understand that these systems dispose of the effluent to the 'ground' and the effluent becomes part of the hydrological cycle; therefore, they are a potential hazard to the environment and human health. It is the owners, their families and their neighbours who will be at most immediate risk.