2 resultados para eastnortheast of Simbiri Island, New Ireland Basin, Papua New Guinea

em Galway Mayo Institute of Technology, Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been well documented that the optimum feedstock for anaerobic digesters consists of readily biodegradable compounds, as found in primary sludge or even a mixed substrate of primary and excess activated sludge. Due to the requirements of the Urban Wastewater Treatment Plant Directive of 1991, the quantities of secondary sludge generated is set to increase substantially. A pilot scale study was undertaken to evaluate the performance of both Mesophilic Anaerobic Digestion and Thermophilic Aerobic digestion in the treatment of secondary sludge. The results indicated that the anaerobic pilot scale digester achieved a greater solids destruction than the aerobic pilot plant averaging at 28% T.S. removal verses 20% for the aerobic digester, despite the fact that secondary sludge is the optimum feedstock for aerobic digestion. This can, however, be attributed to the greater biomass yield experienced with aerobic systems, and to the absence of Autothermal conditions. At present, the traditional technique of Mesophilic Anaerobic Digestion is in widespread application throughout Ireland, for the stabilisation of sewage sludge. There is only one Autothermal Thermophilic Aerobic Digester at present situated in Killarney, Co. Kerry. A further objectives of the study was to compare full-scale applications of Mesophilic Anaerobic Digestion to ATAD. Two Sludge Treatment plants, situated in Co. Kerry, were used for this purpose, and were assessed mainly under the following headings; process stability, solids reduction on average, the ATAD plant in Killarney has the advantage of producing a “Class A” Biosolid in terms of pathogen reduction, and can effectively treat double the quantity of sludge. In addition, economically the ATAD plant is cheaper to run, costing €190 / t.d.s verses €211 / t.d.s. for the anaerobic digester in Tralee. An overview of additional operational Anaerobic Digestion Plants throughout Ireland is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesophilic Anaerobic Digestion treating sewage sludge was investigated at five full-scale sewage treatment plants in Ireland. The anaerobic digestion plants are compared and evaluated in terms of design, equipment, operation, monitoring and management. All digesters are cylindrical, gas mixed and heated Continuously Stirred Tank Reactors (CSTR), varying in size from 130m3 to 800m3. Heat exchanger systems heat all digesters. Three plants reported difficulties with the heating systems ranging from blockages to insufficient insulation and design. Exchangers were modified and replaced within one year of operation at two plants. All but one plant had Combined Heat and Power (CHP) systems installed. Parameter monitoring is a problem at all plants mainly due to a lack of staff and knowledge. The plant operators consider pH and temperature the most important parameters to be measured in terms of successful monitoring of an anaerobic digester. The short time taken and the ease at which pH and temperature can be measured may favour these parameters. Three laboratory scale pilot anaerobic digesters were operated using a variety of feeds over at 144-day period. Two of the pilots were unmixed and the third was mechanically mixed. As expected the unmixed reactors removed more COD by retention of solids in the digesters but also produced greater quantities of biogas than the mixed digester, especially when low solids feed such as whey was used. The mixed digester broke down more solids due to the superior contact between the substrate and the biomass. All three reactors showed good performance results for whey and sewage solids. Scum formation occurred giving operational problems for mixed and unmixed reactors when cattle slurry was used as the main feed source. The pilot test was also used to investigate which parameters were the best indicators of process instability. These trials clearly indicated that total Volatile Fatty Acid (VFA) concentrations was the best parameter to show signs of early process imbalance, while methane composition in the biogas was good to indicate possible nutrient deficiencies in the feed and oxygen shocks. pH was found to be a good process parameter only if the wastewater being treated produced low bicarbonate alkalinities during treatment.