3 resultados para community battery energy storage system optimization

em Galway Mayo Institute of Technology, Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ireland’s remote position on the tip of Europe ensures that the country is vulnerable to uncertainty of supply. The reliance on conventional sources of electricity has ensured that escalated prices and high carbon emissions have been witnessed whilst opportunities that inherent resources provide, such as the wind, have not been capitalised upon. The intermittent nature of the wind make it difficult to maximise its potential as in many cases the highest wind speeds are highest when demand is low. The West of Ireland’s combination of wind speeds and unique topography makes it suitable for and innovative wind powered pumped storage system, which can essentially regulate the wind generated electricity and integrate further penetration of renewable energy. In addition, its location along the Atlantic Ocean provides further scope for innovation as seawater can be integrated into the system design. The construction of such an unprecedented project in combination with increased interconnectors has the potential to make Ireland a rechargeable battery for Europe. However, such ambitious plans are at the very early stages and are in direct contrast to current events in the Irish energy market. This study focuses on the feasibility of West of Ireland pumped storage systems. Entailed within this is an extensive desk study, a detailed site selection process and a feasibility study of grid connection. To increase opportunities to identify the best possible site, the feasibility study was focused on the Galway and Mayo areas solely.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As manufacturers face an increasingly competitive environment, they seek out opportunities to reduce production costs without negatively affecting the yield or the quality of their finished products. The challenge of maintaining high product quality while simultaneously reducing production costs can often be met through investments in energy efficient technologies and energy efficiency practices. Energy management systems can offer both technological and best practice efficiencies in order to achieve substantial savings. A strong energy management system provides a solid foundation for an organisation to reduce production costs and improve site efficiency. The I.S EN16001 energy management standard specifies the requirements for establishing, implementing, maintaining and improving an energy management system and represents the latest best practice for energy management in Ireland. The objective of the energy management system is to establish a systematic approach for improving energy performance continuously. The I.S EN16001 standard specifies the requirements for continuous improvement through using energy more efficiently. The author analysed how GlaxoSmithKline’s (GSK) pharmaceutical manufacturing facility in Cork implemented the I.S. EN16001 energy management system model, and defined how energy saving opportunities where identified and introduced to improve efficiency performance. The author performed an extensive literature research in order to determine the current status of the pharmaceutical industry in Ireland, the processes involved in pharmaceutical manufacturing, the energy users required for pharmaceutical manufacturing and the efficiency measures that can be applied to these energy users in order to reduce energy consumption. The author then analysed how energy management standards are introduced to industry and critically analysed the driving factors for energy management performance in Ireland through case studies. Following an investigation as to how the I.S. EN16001 energy management standard is operated in GSK, a critical analysis of the performance achieved by the GSK energy management system is undertaken in order to determine if implementing the I.S EN16001 standard accelerates achieving energy savings. Since its introduction, the I.S. EN16001 model for energy management has enabled GSK to monitor, target and identify energy efficiency opportunities throughout the site. The model has put in place an energy management system that is continuously reviewed for improvement and to date has reduced GSK’s site operations cost by over 30% through technical improvements and generating energy awareness for smarter energy consumption within the GSK Cork site. Investment in I.S. EN16001 has proved to be a sound business strategy for GSK especially in today's manufacturing environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Ireland the average energy cost for a household in 2006 was estimated to be €1,767, an increase of 4% on 2005 figures. With the state o f the current economic climate, home owners are beginning to realise the potential of energy efficient construction methods. The Passive House Standard offers a cost efficient and sustainable construction solution compared to the Traditional Irish construction methods. This report focuses on the Cost comparison between Passive House construction and traditional construction methods. The report also focuses on barriers that are slowing market penetration of the Passive House standard in the Irish Market. It also identifies potential energy savings that passive house occupants would benefit from. The report also highlights professional opinions on the future development o f the Passive House Standard in Ireland. The conclusions of this report are that the Passive House Standard is a more financially suitable construction solution compared to that o f a traditional dwelling complying with the Irish Building Regulations. The report also concludes that the Passive House Standard won’t be introduced as an Irish Building Regulation in the future but that it will have a big impact on future building regulations. The hypothesis o f this report is supported by data obtained from a literature review, qualitative data analysis and a case study. The report recommends that in order for the Passive House Standard to penetrate further into the Irish construction market, various barriers must be rectified. Local manufactures must start producing suitable components that suit the Passive House specification. The Building Energy Rating system must be altered in order for the Passive House to achieve its potential BER rating.