2 resultados para annual efficiency
em Galway Mayo Institute of Technology, Ireland
Resumo:
This project focuses on the EU Landfill Directive targets for Biodegradable Municipal Waste (BMW) specifically focusing on how the targets will affect Ireland and its waste management infrastructure. Research will consist of reviewing relevant literature, legislation and policies that will provide a comparable between Ireland and other nations. Planning processes which govern both the building structure and running capacities of treatment facilities is also necessary in order to predict amounts of waste diverted from landfill. The efficiency of these treatment plants also requires investigation. Another objective is to research further information on Irelands organic ‘brown’ bin service, this will involve discovering the roll out of bins in the future over a defined time scale as well as the potential amounts of waste that will be collected. Figures received from waste management and waste treatment companies will be combined with figures from the Environmental Protection Agency’s (EPA) annual reports. This will give an indication to past trends and shed light on possible future trends. With this information annul waste volumes consigned to landfill can be calculated and used to determine whether or not Ireland can achieve the EU Landfill Directive targets. Without significant investment in Irelands waste management infrastructure it is unlikely that the targets will be met. Existing waste treatment facilities need to be managed as efficiently as possible. Waste streams must also be managed so waste is shared appropriately between companies and not create a monopolising waste treatment facility. The driving forces behind an efficient waste management infrastructure are government policy and legislation. An overall and efficient waste management strategy must be in place, along with disincentives for landfilling of waste such as the landfill levy. Encouragement and education of the population is the fundamental and first step to achieving the landfill directive targets.
Resumo:
There are presently over 182 RBC plants, treating domestic wastewater, in the Republic of Ireland, 136 of which have been installed since 1986. The use of this treatment plant technology, although not new, is becoming increasingly popular. The aim of this research was to assess the effects that a household detergent has on rotating biological contractor treatment plant efficiency. Household detergents contribute phosphorus to the surrounding environment and can also remove beneficial biomass from the disc media. A simple modification was made to a conventional flat disc unit to increase the oxygen transfer of the process. The treatment efficiency of the modified RBC (with aeration cups attached) was assessed against a parallel conventional system, with and without degergent loading. The parameters monitored were chemical oxygen demand (COD), bio-chemical oxygen demand (BOD), nitrates, phosphates, dissolved oxygen, the motors power consumption, pH, and temperature. Some microscopic analysis of the biofilm was also to be carried out. The treatment efficiency of both units was compared, based on COD/BOD removal. The degree of nitrification achievable by both units was also assessed with any fluctuations in pH noted. Monitoring of the phosphorus removal capabilities of both units was undertaken. Relationships between detergent concentrations and COD removal efficiencies were also analysed.