2 resultados para Web Security
em Galway Mayo Institute of Technology, Ireland
Resumo:
Driven by concerns about rising energy costs, security of supply and climate change a new wave of Sustainable Energy Technologies (SET’s) have been embraced by the Irish consumer. Such systems as solar collectors, heat pumps and biomass boilers have become common due to government backed financial incentives and revisions of the building regulations. However, there is a deficit of knowledge and understanding of how these technologies operate and perform under Ireland’s maritime climate. This AQ-WBL project was designed to address both these needs by developing a Data Acquisition (DAQ) system to monitor the performance of such technologies and a web-based learning environment to disseminate performance characteristics and supplementary information about these systems. A DAQ system consisting of 108 sensors was developed as part of Galway-Mayo Institute of Technology’s (GMIT’s) Centre for the Integration of Sustainable EnergyTechnologies (CiSET) in an effort to benchmark the performance of solar thermal collectors and Ground Source Heat Pumps (GSHP’s) under Irish maritime climate, research new methods of integrating these systems within the built environment and raise awareness of SET’s. It has operated reliably for over 2 years and has acquired over 25 million data points. Raising awareness of these SET’s is carried out through the dissemination of the performance data through an online learning environment. A learning environment was created to provide different user groups with a basic understanding of a SET’s with the support of performance data, through a novel 5 step learning process and two examples were developed for the solar thermal collectors and the weather station which can be viewed at http://www.kdp 1 .aquaculture.ie/index.aspx. This online learning environment has been demonstrated to and well received by different groups of GMIT’s undergraduate students and plans have been made to develop it further to support education, awareness, research and regional development.
Resumo:
Although the ASP model has been around for over a decade, it has not achieved the expected high level of market uptake. This research project examines the past and present state of ASP adoption and identifies security as a primary factor influencing the uptake of the model. The early chapters of this document examine the ASP model and ASP security in particular. Specifically, the literature and technology review chapter analyses ASP literature, security technologies and best practices with respect to system security in general. Based on this investigation, a prototype to illustrate the range and types of technologies that encompass a security framework was developed and is described in detail. The latter chapters of this document evaluate the practical implementation of system security in an ASP environment. Finally, this document outlines the research outputs, including the conclusions drawn and recommendations with respect to system security in an ASP environment. The primary research output is the recommendation that by following best practices with respect to security, an ASP application can provide the same level of security one would expect from any other n-tier client-server application. In addition, a security evaluation matrix, which could be used to evaluate not only the security of ASP applications but the security of any n-tier application, was developed by the author. This thesis shows that perceptions with regard to fears of inadequate security of ASP solutions and solution data are misguided. Finally, based on the research conducted, the author recommends that ASP solutions should be developed and deployed on tried, tested and trusted infrastructure. Existing Application Programming Interfaces (APIs) should be used where possible and security best practices should be adhered to where feasible.