9 resultados para Waste footwear industry
em Galway Mayo Institute of Technology, Ireland
Resumo:
Construction and demolition waste management is becoming increasingly important on construction sites as landfill space in Ireland is rapidly depleting and waste management costs are rising. Due to these factors waste management plans are seen as a good response to minimising waste on site and this thesis aims to investigate how to implement such a plan on a practical case study as well as investigating the legislation regarding construction and demolition waste along with market availability for the reuse of the waste. Main contractor surveys were also carried out in order to gain a better understanding of current attitudes within the industry and these surveys are analysed in chapter five. A survey was also carried out among sub-contractors but this survey has not been used for this thesis as the study is on-going. The primary aim of this thesis is to examine the waste hierarchy opportunities that are available for construction and demolition waste in Ireland and to examine the effects of management strategies on construction and demolition waste reduction at the project level. A partnership was developed with Carey Developments Ltd in Co. Galway and an analysis of their waste management practices was undertaken. The primary case study will be the ‘Taylors Hill’ project in Co. Galway where work commenced in March, 2012. The secondary aim of the thesis is to develop specific waste minimisation strategies for the company and to develop a training tool kit for use on site.
Resumo:
This study analyses the area of construction and demolition waste (C & D W) auditing. The production of C&DW has grown year after year since the Environmental Protection Agency (EPA) first published a report in 1996 which provided data for C&D W quantities for 1995 (EPA, 1996a). The most recent report produced by the EPA is based on data for 2005 (EPA, 2006). This report estimated that the quantity of C&DW produced for that period to be 14 931 486 tonnes. However, this is a ‘data update’ report containing an update on certain waste statistics so any total provided would not be a true reflection of the waste produced for that period. This illustrates that a more construction site-specific form of data is required. The Department of Building and Civil Engineering in the Galway-Mayo Institute of Technology have carried out two recent research projects (Grimes, 2005; Kelly, 2006) in this area, which have produced waste production indicators based on site-specific data. This involved the design and testing of an original auditing tool based on visual characterisation and the application of conversion factors. One of the main recommendations of these studies was to compare this visual characterisation approach with a photogrammetric sorting methodology. This study investigates the application of photogrammetric sorting on a residential construction site in the Galway region. A visual characterisation study is also carried out on the same project to compare the two methodologies and assess the practical application in a construction site environment. Data collected from the waste management contractor on site was also used to provide further evaluation. From this, a set of waste production indicators for new residential construction was produced: □ 50.8 kg/m2 for new residential construction using data provided by the visual characterisation method and the Landfill Levy conversion factors. □ 43 kg/m2 for new residential construction using data provided by the photogrammetric sorting method and the Landfill Levy conversion factors. □ 23.8 kg/m2 for new residential construction using data provided by Waste Management Contractor (WMC). The acquisition of the data from the waste management contractor was a key element for testing of the information produced by the visual characterisation and photogrammetric sorting methods. The actual weight provided by the waste management contractor shows a significant difference between the quantities provided.
Resumo:
Aughinish Alumina Limited (AAL) have an obligation by terms of their Integrated Pollution Control Licence (IPCL) and Planning Permission to establish vegetation on the red mud stack at their plant at Aughinish, Co. Limerick. High pH and high exchangeable sodium percentage are the main known factors limiting the establishment of vegetation on red mud. Gypsum addition has been known to assist in alleviating these problems in other countries. However, there is no experience or published information on red mud rehabilitation under Irish conditions. Red mud with organic and inorganic waste-derived ameliorants as well as selected grassland species were examined under laboratory controlled environment conditions as well as in field plot trials. Also, in order that it would be economically achievable, the research utilised locally available waste products as the organic amendments. Screening trials found that physical constraints severely limit plant germination and growth in red mud. Gypsum addition effectively lowers pH, exchangeable sodium percentage and the availability of A1 and Fe in the mud. A strong relationship between pH, ESP and A1 levels was also found. Gypsum addition increased germination percentages and plant growth for all species investigated. Greenhouse trials demonstrated that organic wastes alone did not greatly improve conditions for plant growth but when used in conjunction with gypsum plant performances for all species investigated was significantly increased. There was a high mortality rate for grasses in non-gypsum treatments. An emerging trend of preferential iron uptake and calcium deficiency in non-gypsum treatments was found at pot screening stage. Species also displayed manganese and magnesium deficiencies.
Resumo:
The objective of this dissertation is to investigate the effect wind energy has on the Electricity Supply Industry in Ireland. Wind power generation is a source of renewable energy that is in abundant supply in Ireland and is fast becoming a resource that Ireland is depending on as a diverse and secure of supply of energy. However, wind is an intermittent resource and coupled with a variable demand, there are integration issues with balancing demand and supply effectively. To maintain a secure supply of electricity to customers, it is necessary that wind power has an operational reserve to ensure appropriate backup for situations where there is low wind but high demand. This dissertation examines the affect of this integration by comparing wind generation to that of conventional generation in the national grid. This is done to ascertain the cost benefits of wind power generation against a scenario with no wind generation. Then, the analysis examines to see if wind power can meet the pillars of sustainability. This entails looking at wind in a practical scenario to observe how it meets these pillars under the criteria of environmental responsibility, displacement of conventional fuel, cost competitiveness and security of supply.
Resumo:
The objective of this thesis is to compare and contrast environmental licensing systems, for the wood panel industry, in a number of countries in order to determine which system is the best from an environmental and economic point of view. The thesis also examines the impact which government can have on industry and the type of licensing system in operation in a country. Initially, the thesis investigates the origins of the various environmental licensing systems which are in operation in Ireland, Scotland, Wales, France, USA and Canada. It then examines the Environmental Agencies which control and supervise industry in these countries. The impact which the type of government (i.e. unitary or federal) in charge in any particular country has on industry and the Regulatory Agency in that country is then described. Most of the mills in the thesis make a product called OSB (Oriented Strand Board) and the manufacturing process is briefly described in order to understand where the various emissions are generated. The main body of the thesis examines a number of environmental parameters which have emission limit values in the licenses examined, although not all of these parameters have emission limit values in all of the licenses. All of these parameters are used as indicators of the potential impact which the mill can have on the environment. They have been set at specific levels by the Environmental Agencies in the individual countries to control the impact of the mill. Following on from this, the two main types of air pollution control equipment (WESPs and RTOs) are described in regard to their function and capabilities. The mill licenses are then presented in the form of results tables which compare air results and water results separately. This is due to the fact that the most significant emission from this type of industry is to air. A matrix system is used to compare the licenses so that the comparison can be as objective as possible. The discussion examines all of the elements previously described and from this it was concluded that the IPC licensing system is the best from an environmental and economic point of view. It is a much more expensive system to operate than the other systems examined, but it is much more comprehensive and looks at the mill as a whole rather than fragmenting it. It was also seen that the type of environmental licensing system which is in place in a country can play a role in the locating of an industry as certain systems were seen to have more stringent standards attached to them. The type of standard in place in a country is in turn influenced by the type of government which is in place in that country.
Resumo:
This project focuses on the EU Landfill Directive targets for Biodegradable Municipal Waste (BMW) specifically focusing on how the targets will affect Ireland and its waste management infrastructure. Research will consist of reviewing relevant literature, legislation and policies that will provide a comparable between Ireland and other nations. Planning processes which govern both the building structure and running capacities of treatment facilities is also necessary in order to predict amounts of waste diverted from landfill. The efficiency of these treatment plants also requires investigation. Another objective is to research further information on Irelands organic ‘brown’ bin service, this will involve discovering the roll out of bins in the future over a defined time scale as well as the potential amounts of waste that will be collected. Figures received from waste management and waste treatment companies will be combined with figures from the Environmental Protection Agency’s (EPA) annual reports. This will give an indication to past trends and shed light on possible future trends. With this information annul waste volumes consigned to landfill can be calculated and used to determine whether or not Ireland can achieve the EU Landfill Directive targets. Without significant investment in Irelands waste management infrastructure it is unlikely that the targets will be met. Existing waste treatment facilities need to be managed as efficiently as possible. Waste streams must also be managed so waste is shared appropriately between companies and not create a monopolising waste treatment facility. The driving forces behind an efficient waste management infrastructure are government policy and legislation. An overall and efficient waste management strategy must be in place, along with disincentives for landfilling of waste such as the landfill levy. Encouragement and education of the population is the fundamental and first step to achieving the landfill directive targets.
Resumo:
Energy from waste (E/W) technologies in the form o f biogas plants, CHP plants and other municipal solid waste (MSW) conversion technologies, have been gaining steady ground in the provision o f energy throughout Europe and the UK. Urban Waste Water Treatment Plants (UWWTP) are utilising much o f the same biochemical processes common to these E/W plants. Previous studies on Centralised Anaerobic Digestion (CAD) within Ireland found that the legislative and economic conditions were not conducive to such an operation on the grounds o f low energy price for electric and heat energy, and due to the restrictive nature o f the allowable feedstocks. Recent changes to the Irish REFIT tariff on energy produced from Anaerobic digestion; alterations to the regulation o f the allowable use o f animal by products(ABP); the recent enactment o f the Renewable Energy D irective (09/28/EC) and a subsequent review o f the draft Biowaste Directive (2001) required that the issue o f decentralised energy production in Ireland be reassessed. In this instance the feasibility study is based on a extant rural community, centred around the village o f Woodford Co Galway. The review found that the prevailing conditions were now such that it was technically and economically feasible for this biochemical process to provide energy and waste treatment facilities at the above location. The review also outlines the last item which is preventing this process from becoming achievable, specifically the lack o f a digestate regulation on land spreading which deals specifically with biowaste. The study finds that the implementation o f the draft EU biowaste regulations, with amendments for Cr and Hg levels to match the proposed Irish regulation for compost, would ensure that Ireland has some o f the most restrictive regulations in Europe for this application. The delay in completing this piece o f legislation is preventing national energy and waste issues from being resolved in a planned and stepwise fashion. A proposed lay out for the new Integrated Waste from Energy Plant (IW/EP) is presented. Budget economic projections and alternative revenue streams are outlined. Finally a review o f the national policies regarding the Rural Development Plan (RDP), the Rural Planning Guidelines (RPG) and the National Renewable Energy Action Plan (NREAP) are examined against the relevant EU directives.
Resumo:
This thesis presents the research and development of sustainable design guidelines for the furniture and wood products industry, suitable for sustainably enhancing design, manufacturing and associated activities. This sustainable guideline is based on secondary research conducted on subject areas such as ‘eco’ design, ‘green’ branding and ‘green’ consumerism, as well as an examination of existing certifications and sustainable tools techniques and methodologies, national and international drivers for sustainable development and an overview of sustainability in the Irish furniture manufacturing context. The guideline was further developed through primary research. This consisted of a focus group attended by leading Irish designers, manufacturers and academics in the area of furniture and wood products. This group explored the question of ‘green branding’ saturation in the market and the viability of investing in sustainability just yet. Participants stated that they felt the market for ‘green’ products is evolving very slowly and that there is no metric or legal framework present to audit whether or not companies are producing products that really embody sustainability. All the participants believed that developing and introducing a new certification process to incorporate a sustainable design process was a viable and necessary solution to protecting Irish furniture and wood manufacturers going forward. For the purposes of the case study, the author investigated a ‘sustainable’ design process for Team woodcraft, Ltd., through the design and development of a ‘sustainable’ children’s furniture range. The case study followed a typical design and development process; detailing customer design specifications, concept development and refinement and cumulating in final prototype, as well as associated engineering drawings. Based on this primary and secondary research, seven fundamental core principles for this sustainable guideline have been identified by the author. The author then used these core principles to expand into guidelines for the basis of proposed new Irish sustainable design guidelines for the furniture and wood products industry, the concept of which the author has named ‘Green Dot’. The author suggests that the ‘Green Dot’ brand or logo could be used to market an umbrella network of Irish furniture designers and manufactures who implement the recommended sustainable techniques.
Resumo:
This is a study of a state of the art implementation of a new computer integrated testing (CIT) facility within a company that designs and manufactures transport refrigeration systems. The aim was to use state of the art hardware, software and planning procedures in the design and implementation of three CIT systems. Typical CIT system components include data acquisition (DAQ) equipment, application and analysis software, communication devices, computer-based instrumentation and computer technology. It is shown that the introduction of computer technology into the area of testing can have a major effect on such issues as efficiency, flexibility, data accuracy, test quality, data integrity and much more. Findings reaffirm how the overall area of computer integration continues to benefit any organisation, but with more recent advances in computer technology, communication methods and software capabilities, less expensive more sophisticated test solutions are now possible. This allows more organisations to benefit from the many advantages associated with CIT. Examples of computer integration test set-ups and the benefits associated with computer integration have been discussed.