2 resultados para Topological Construct

em Galway Mayo Institute of Technology, Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A composting Heat Extraction Unit (HEU) was designed to utilise waste heat from decaying organic matter for a variety of heating application The aim was to construct an insulated small scale, sealed, organic matter filled container. In this vessel a process fluid within embedded pipes would absorb thermal energy from the hot compost and transport it to an external heat exchanger. Experiments were conducted on the constituent parts and the final design comprised of a 2046 litre container insulated with polyurethane foam and kingspan with two arrays of qualpex piping embedded in the compost to extract heat. The thermal energy was used in horticultural trials by heating polytunnels using a radiator system during a winter/spring period. The compost derived energy was compared with conventional and renewable energy in the form of an electric fan heater and solar panel. The compost derived energy was able to raise polytunnel temperatures to 2-3°C above the control, with the solar panel contributing no thermal energy during the winter trial and the electric heater the most efficient maintaining temperature at its preset temperature of 10°C. Plants that were cultivated as performance indicators showed no significant difference in growth rates between the heat sources. A follow on experiment conducted using special growing mats for distributing compost thermal energy directly under the plants (Radish, Cabbage, Spinach and Lettuce) displayed more successful growth patterns than those in the control. The compost HEU was also used for more traditional space heating and hot water heating applications. A test space was successfully heated over two trials with varying insulation levels. Maximum internal temperature increases of 7°C and 13°C were recorded for building U-values of 1.6 and 0.53 W/m2K respectively using the HEU. The HEU successfully heated a 60 litre hot water cylinder for 32 days with maximum water temperature increases of 36.5°C recorded. Total energy recovered from the 435 Kg of compost within the HEU during the polytunnel growth trial was 76 kWh which is 3 kWh/day for the 25 days when the HEU was activated. With a mean coefficient of performance level of 6.8 calculated for the HEU the technology is energy efficient. Therefore the compost HEU developed here could be a useful renewable energy technology particularly for small scale rural dwellers and growers with access to significant quantities of organic matter

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The twin objectives of the work described were to construct nutrient balance models (NBM) for a range of Irish animal production systems and to evaluate their potential as a means of estimating the nutrient composition of farm wastes. The NBM has three components. The first is the intake of nutrients in the animal's diet. The second is retention or the nutrients the animal retains for the production of milk, meat or eggs. The third is the balance or the difference between the nutrient intake and retention. Data on the intake levels and their nutrient value for dairy cows, beef cattle, pigs and poultry systems were assembled. Literature searches and interviews with National experts were the primary sources of information. NBMs were then constructed for each production system. Summary tables of the nutrient values for the common diet constituents used in Irish animal production systems, the nutrient composition of the animal products and the NBMs (nutrient intake, retention and excretion) for a range of production systems were assembled. These represent the first comprehensive data set of this type for Irish animal production systems. There was generally good agreement between the derived NBMs values and those published in the literature. The NBMs were validated on a number of farms. Data on animal numbers, fertiliser use, concentrates inputs and production output were recorded on seven farms. Using the data a nutrient input/output balance was constructed for each farm. This was compared with the NBM estimate of the farm nutrient balance. The results showed good agreement between the measured balance and the NBM estimate particularly for the pig and poultry farms. However, the validation emphasised the inherent risks associated with NBMs. The average values used for feed intake and production parameters in the NEMs may result in the under or over estimate of actual nutrient balances on individual farms where these variables are substantially different. On the grassland farms there was a poor correlation between the input/output estimate and the NBM. This possibly results from the omission of the soil's contribution to the nutrient balance. However, the results indicate that the NBMs developed are a potentially useful tool for estimating nutrient balances. They also will serve to highlight the significant fraction of the nutrient inputs into farming systems that are retained on the farm. The potential of the NBM as a means of estimating the nutrient composition of farm wastes was evaluated on two farms. Feed intake and composition, animal production, slurry production was monitored during the indoor winter feeding period. Slurry samples were taken for analysis. The appropriates NBMs were used to estimate the nutrient balance for each farm. The nutrient content of the slurry produced was calculated. There was a good agreement between the NBM estimate and the measured values. This preliminary evaluation suggests that the NBM has a potential to provide the farmer with a simple means of estimating the nutrient value of his slurry.