3 resultados para Supercritical fluid technology

em Galway Mayo Institute of Technology, Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sustained economic growth that has been experienced in the Irish economy in recent years has relied, to a large extent, on the contribution and performance of those industry sectors that possess the ability to provide high-value-added products and services to domestic and international markets. One such contributor has been the Technology sector. However, the performance of this sector relies upon the availability of the necessary capabilities and competencies for Technology companies to remain competitive. The Expert Group on Future Skills Needs have forecasted future skills shortages in this sector. The purpose of this research has been to examine the extent to which Irish Technology companies are taking measures to meet changing skills requirements, through training and development interventions. Survey research methods (in the form of a mail questionnaire, supported by a Web-based questionnaire) have been used to collect information on the expenditure on, and approach to, training and development in these companies, in addition to the methods, techniques and tools/aids that are used to support the delivery of these activities. The contribution of Government intervention has also been examined. The conclusions have been varied. When the activities of the responding companies are considered in isolation, the picture to emerge is primarily positive. Although the expenditure on training and development is slightly lower than that indicated in previous studies, the results vary by company size. Technical employees are clearly the key focus of training provision, while Senior Managers and Directors, Clerical and Administrative staff and Manual workers are a great deal more neglected in training provision. Expenditure on, and use of, computer-based training methods is high, as is the use of most of the specified techniques for facilitating learning. However, when one considers the extent to which external support (in the form of Government interventions and cooperation with other companies and with education and training providers) is integrated into the overall training practices of these companies, significant gaps in practice are identified. The thesis concludes by providing a framework to guide future training and development practices in the Technology sector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A composting Heat Extraction Unit (HEU) was designed to utilise waste heat from decaying organic matter for a variety of heating application The aim was to construct an insulated small scale, sealed, organic matter filled container. In this vessel a process fluid within embedded pipes would absorb thermal energy from the hot compost and transport it to an external heat exchanger. Experiments were conducted on the constituent parts and the final design comprised of a 2046 litre container insulated with polyurethane foam and kingspan with two arrays of qualpex piping embedded in the compost to extract heat. The thermal energy was used in horticultural trials by heating polytunnels using a radiator system during a winter/spring period. The compost derived energy was compared with conventional and renewable energy in the form of an electric fan heater and solar panel. The compost derived energy was able to raise polytunnel temperatures to 2-3°C above the control, with the solar panel contributing no thermal energy during the winter trial and the electric heater the most efficient maintaining temperature at its preset temperature of 10°C. Plants that were cultivated as performance indicators showed no significant difference in growth rates between the heat sources. A follow on experiment conducted using special growing mats for distributing compost thermal energy directly under the plants (Radish, Cabbage, Spinach and Lettuce) displayed more successful growth patterns than those in the control. The compost HEU was also used for more traditional space heating and hot water heating applications. A test space was successfully heated over two trials with varying insulation levels. Maximum internal temperature increases of 7°C and 13°C were recorded for building U-values of 1.6 and 0.53 W/m2K respectively using the HEU. The HEU successfully heated a 60 litre hot water cylinder for 32 days with maximum water temperature increases of 36.5°C recorded. Total energy recovered from the 435 Kg of compost within the HEU during the polytunnel growth trial was 76 kWh which is 3 kWh/day for the 25 days when the HEU was activated. With a mean coefficient of performance level of 6.8 calculated for the HEU the technology is energy efficient. Therefore the compost HEU developed here could be a useful renewable energy technology particularly for small scale rural dwellers and growers with access to significant quantities of organic matter

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impending introduction of lead-free solder in the manufacture of electrical and electronic products has presented the electronics industry with many challenges. European manufacturers must transfer from a tin-lead process to a lead-free process by July 2006 as a result of the publication of two directives from the European Parliament. Tin-lead solders have been used for mechanical and electrical connections on printed circuit boards for over fifty years and considerable process knowledge has been accumulated. Extensive literature reviews were conducted on the topic and as a result it was found there are many implications to be considered with the introduction of lead-free solder. One particular question that requires answering is; can lead-free solder be used in existing manufacturing processes? The purpose of this research is to conduct a comparative study of a tin-lead solder and a lead-free solder in two key surface mount technology (SMT) processes. The two SMT processes in question were the stencil printing process and the reflow soldering process. Unreplicated fractional factorial experimental designs were used to carry out the studies. The quality of paste deposition in terms of height and volume were the characteristics of interest in the stencil printing process. The quality of solder joints produced in the reflow soldering experiment was assessed using x-ray and cross sectional analysis. This provided qualitative data that was then uniquely scored and weighted using a method developed during the research. Nested experimental design techniques were then used to analyse the resulting quantitative data. Predictive models were developed that allowed for the optimisation of both processes. Results from both experiments show that solder joints of comparable quality to those produced using tin-lead solder can be produced using lead-free solder in current SMT processes.