2 resultados para Specific heat.

em Galway Mayo Institute of Technology, Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finfish pots have emerged as a “responsible” gear, when used in combination with conservational and technical measures to sustain fisheries. Previous trials in Irish waters have offered no published reported data and so three designs tested in the current study provide new information on this gear. The most successful traps in terms of fish catch were rigid steel framed rectangular pots used to target Conger eel. Although commercial yield was low (0.2 per trap haul), potential existed for a viable pot fishery. Deployment and storage of Norwegian floating pots was conducted with relative ease but performance in the water was poor resulting in loss of gear. Catch returns were notable even though effort was restricted as mega-faunal by-catch was a problem, which lead to ending this trial. From these initial trials it was evident that catch rates were low compared to established Norwegian fisheries (3.6 cod per pot), which resulted in the utilisation of pots, already established in the crustacean fishery, to find species readily accessible to pot capture. Although fished and designed differently, these gears provided an opportunity to establish the benefits of pot fishing to fish quality and to determine the effects on by-catch. The fishing effects of three catching methods (pots, angling and trawl) and the effects of air exposure on the physiological status of a common by-catch, the lesser spotted dogfish Scyliorhinus canícula (L.) were examined using a range of physiological biomarkers (plasma catecholamine, glucose, lactate, muscle pH and muscle lactate). Physiological responses of fish to an emersion stress regime resulted in a significant metabolic disturbance in groups, but may not have weakened the overall health of these fish, as signified in the revival of some metabolites. Plasma glucose and lactate concentrations did not however recovery to baseline levels indicating that to achieve an accurate profile, responses should be determined by a suite of biomarkers. Responses did not demonstrate that samples from the pots were significantly less stressed than for the other two methods; angling and trawling, which are in contrast to many other studies. Employment of finfish potting therefore in Irish waters needs further consideration before further promotion as a more responsible method to supplement or replace established techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A composting Heat Extraction Unit (HEU) was designed to utilise waste heat from decaying organic matter for a variety of heating application The aim was to construct an insulated small scale, sealed, organic matter filled container. In this vessel a process fluid within embedded pipes would absorb thermal energy from the hot compost and transport it to an external heat exchanger. Experiments were conducted on the constituent parts and the final design comprised of a 2046 litre container insulated with polyurethane foam and kingspan with two arrays of qualpex piping embedded in the compost to extract heat. The thermal energy was used in horticultural trials by heating polytunnels using a radiator system during a winter/spring period. The compost derived energy was compared with conventional and renewable energy in the form of an electric fan heater and solar panel. The compost derived energy was able to raise polytunnel temperatures to 2-3°C above the control, with the solar panel contributing no thermal energy during the winter trial and the electric heater the most efficient maintaining temperature at its preset temperature of 10°C. Plants that were cultivated as performance indicators showed no significant difference in growth rates between the heat sources. A follow on experiment conducted using special growing mats for distributing compost thermal energy directly under the plants (Radish, Cabbage, Spinach and Lettuce) displayed more successful growth patterns than those in the control. The compost HEU was also used for more traditional space heating and hot water heating applications. A test space was successfully heated over two trials with varying insulation levels. Maximum internal temperature increases of 7°C and 13°C were recorded for building U-values of 1.6 and 0.53 W/m2K respectively using the HEU. The HEU successfully heated a 60 litre hot water cylinder for 32 days with maximum water temperature increases of 36.5°C recorded. Total energy recovered from the 435 Kg of compost within the HEU during the polytunnel growth trial was 76 kWh which is 3 kWh/day for the 25 days when the HEU was activated. With a mean coefficient of performance level of 6.8 calculated for the HEU the technology is energy efficient. Therefore the compost HEU developed here could be a useful renewable energy technology particularly for small scale rural dwellers and growers with access to significant quantities of organic matter