3 resultados para Shrimp Effluent

em Galway Mayo Institute of Technology, Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have shown that septic tank systems are a major source of groundwater pollution. Many public health workers feel that the most cri^cal aspect of the use of septic tanks as a means of sewage disposal is the contamination of private water wells with attendant human health hazards. In this study the movement and attenuation of septic tank effluents in a range of soil/overburden types and hydrogeological situations was investigated. The suitability of a number of chemical and biological tracer materials to monitor the movement of septic tank effluent constituents to groundwater sources was also examined. The investigation was divided into three separate but inteiTelated sections. In the first section of the study the movement of septic tank effluent from two soil treatment systems was investigated by direct measurements of soil nutrient concentrations and enteric bacterial numbers in the soil beneath and downgradient of the test systems. Two sites with different soil types and hydrogeological characteristics were used. The results indicated that the attenuation of the effluent in both of the treatment systems was incomplete. Migration of nitrate, ammonium, phosphate and fecal bacteria to a depth of 50 cm beneath the inverts of the distribution tiles was demonstrated on all sampling occasions. The lateral migration of the pollutants was less pronounced, although on occasions high nutrients levels and fecal bacterial numbers were detected at a lateral distance of 4.0 m downgradient of the test systems. There was evidence that the degree and extent of effluent migration was increased after periods of heavy or prolonged rainfall when the attenuating properties of the treatment systems were reduced as a result of saturation of the soil. The second part of the study examined the contamination of groundwaters downgradient of septic tank soil treatment systems. Three test sites were used in the investigation. The sites were chosen because of differences in the thicknesses and nature of the unsaturated zone available for effluent attenuation at each of the locations. A series of groundwater monitoring boreholes were installed downgradient of the test systems at each of the sites and these were sampled regularly to assess the efficiency of the overburden material in reducing the polluting potential of the wastewater. Effluent attenuation in the septic tank treatment systems was shown to be incomplete, resulting in chemical and microbiological contamination of the groundwaters downgradient of the systems. The nature and severity of groundwater contamination was dependent on the composition and thickness of the unsaturated zone and the extent of weathering in the underlying saturated bedrock. The movement of septic tank effluent through soil/overburdens to groundwater sources was investigated by adding a range of chemical and biological tracer materials to the three septic tank systems used in section two of the study. The results demonstrated that a single tracer type cannot be used to accurately monitor the movement of all effluent constituents through soils to groundwater. The combined use of lithium bromide and endospores of Bacillus globigii was found to give an accurate indication of the movement of both the chemical and biological effluent constituents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plaice (Pleuronectes platessa, L.) and dab (Limanda limanda, L.) are among the most abundant flatfishes in the north-eastern Atlantic region and the dominant species in shallow coastal nursery grounds. With increasing pressures on commercial flatfish stocks in combination with changing coastal environments, better knowledge of population dynamics during all life stages is needed to evaluate variability in year-class strength and recruitment to the fishery. The aim of this research was to investigate the complex interplay of biotic and abiotic habitat components influencing the distribution, density and growth of plaice and dab during the vulnerable juvenile life stage and to gain insight in spatial and temporal differences in nursery habitat quality along the west coast of Ireland. Intraspecific variability in plaice diet was observed at different spatial scales and showed a link with condition, recent growth and morphology. This highlights the effect of food availability on habitat quality and the need to consider small scale variation when attempting to link habitat quality to feeding, growth and condition of juvenile flatfish. There was evidence of trophic, spatial and temporal resource partitioning between juvenile plaice and dab allowing the co-existence of morphologically similar species in nursery grounds. In the limited survey years there was no evidence that the carrying capacity of the studied nursery grounds was reached but spatial and interannual variations in fish growth indicated fluctuating environments in terms of food availability, predator densities, sediment features and physico-chemical conditions. Predation was the most important factor affecting habitat quality for juvenile plaice and dab with crab densities negatively correlated to fish condition whereas shrimp densities were negatively associated with densities of small-sized juveniles in spring. A comparison of proxies for fish growth showed the advantage of Fulton’s K for routine use whereas RNA:DNA ratios proved less powerful when short-term environmental fluctuations are lacking. This study illustrated how distinct sets of habitat features can drive spatial variation in density and condition of juvenile flatfish highlighting the value of studying both variables when modeling habitat requirements. The habitat models generated in this study also provide a powerful tool to predict potential climate and anthropogenic impacts on the distribution and condition of juveniles in flatfish nurseries. The need for effective coastal zone management was emphasized to ensure a sustainable use of coastal resources and successful flatfish recruitment to the fishery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The overall purpose of this study was to develop a thorough inspection regime for onsite wastewater treatment systems, which is practical and could be implemented on all site conditions across the country. With approximately 450,000 onsite wastewater treatment systems in Ireland a risk based methodology is required for site selection. This type of approach will identify the areas with the highest potential risk to human health and the environment and these sites should be inspected first. In order to gain the required knowledge to develop an inspection regime in-depth and extensive research was earned out. The following areas of pertinent interest were examined and reviewed, history of domestic wastewater treatment, relevant wastewater legislation and guidance documents and potential detrimental impacts. Analysis of a questionnaire from a prior study, which assessed the resources available and the types of inspections currently undertaken by Local authorities was carried out. In addition to the analysis of the questionnaire results, interviews were carried out with several experts involved in the area of domestic wastewater treatment. The interview focussed on twelve key questions which were directed towards the expert’s opinions on the vital aspects of developing an inspection regime. The background research, combined with the questionnaire analysis and information from the interviews provided a solid foundation for the development of an inspection regime. Chapter 8 outlines the inspection regime which has been developed for this study. The inspection regime includes a desktop study, consultation with the homeowners, visual site inspection, non-invasive site tests, and inspection of the treatment systems. The general opinion from the interviews carried out, was that a standardised approach for the inspections was necessary. For this reason an inspection form was produced which provides a standard systematic approach for inspectors to follow. This form is displayed in Appendix 3. The development of a risk based methodology for site selection was discussed and a procedure similar in approach to the Geological Survey of Irelands Groundwater Protection Schemes was proposed. The EPA is currently developing a risk based methodology, but it is not available to the general public yet. However, the EPA provided a copy of a paper outlining the key aspects of their methodology. The methodology will use risk maps which take account of the following parameters: housing density, areas with inadequate soil conditions, risk of water pollution through surface and subsurface pathways. Sites identified with having the highest potential risk to human health and the environment shall be inspected first. Based on the research carried out a number of recommendations were made which are outlined in Chapter 10. The principle conclusion was that, if these systems fail to operate satisfactorily, home owners need to understand that these systems dispose of the effluent to the 'ground' and the effluent becomes part of the hydrological cycle; therefore, they are a potential hazard to the environment and human health. It is the owners, their families and their neighbours who will be at most immediate risk.