4 resultados para Production Management
em Galway Mayo Institute of Technology, Ireland
Resumo:
All organisations make some contribution to the degradation of the environment through their use of resources and production of waste. Environmental management systems (EMS) standards can provide a tool for companies to systematically reduce their environmental impacts. ISO 14001 was published in 1996. This fitted in with plans of the case study company to take proactive action in this area, even though there was no legislative requirement for them to do so. As EMS implementation was a new area at the time, appropriate methodologies were developed to address different aspects of the implementation, and ISO 14001 was successfully implemented in the company. The results of the primary research included: ♦ Drawing up a methodology for identifying and interpreting the environmental legislation that may have an impact on the organisation and compiling a register of such regulations. ♦ Developing a robust methodology for assessing significant environmental aspects and impacts and applying this to the software company. ♦ Establishing objectives and targets for those aspects identified as significant and implementing environmental management programmes to meet these. ♦ Developing an internal environmental audit procedure based on auditing against the significant aspects. ♦ Integrating areas of the EMS with the existing quality management system in order to avoid duplication of effort. ♦ Undergoing an external assessment process in order to achieve certification of the system. The thesis concludes that the systematic approach defined in ISO 14001 provided a mechanism that the organisation was able to adopt to bring about improvement in its environmental performance. The system was based on a thorough evaluation of the organisation's significant environmental aspects in order to bring about a reduction in its negative impacts. The ISO 14001 requirement for continual improvement is the key driver of the system, and this is what differentiates it from ISO 9000.
Resumo:
As manufacturers face an increasingly competitive environment, they seek out opportunities to reduce production costs without negatively affecting the yield or the quality of their finished products. The challenge of maintaining high product quality while simultaneously reducing production costs can often be met through investments in energy efficient technologies and energy efficiency practices. Energy management systems can offer both technological and best practice efficiencies in order to achieve substantial savings. A strong energy management system provides a solid foundation for an organisation to reduce production costs and improve site efficiency. The I.S EN16001 energy management standard specifies the requirements for establishing, implementing, maintaining and improving an energy management system and represents the latest best practice for energy management in Ireland. The objective of the energy management system is to establish a systematic approach for improving energy performance continuously. The I.S EN16001 standard specifies the requirements for continuous improvement through using energy more efficiently. The author analysed how GlaxoSmithKline’s (GSK) pharmaceutical manufacturing facility in Cork implemented the I.S. EN16001 energy management system model, and defined how energy saving opportunities where identified and introduced to improve efficiency performance. The author performed an extensive literature research in order to determine the current status of the pharmaceutical industry in Ireland, the processes involved in pharmaceutical manufacturing, the energy users required for pharmaceutical manufacturing and the efficiency measures that can be applied to these energy users in order to reduce energy consumption. The author then analysed how energy management standards are introduced to industry and critically analysed the driving factors for energy management performance in Ireland through case studies. Following an investigation as to how the I.S. EN16001 energy management standard is operated in GSK, a critical analysis of the performance achieved by the GSK energy management system is undertaken in order to determine if implementing the I.S EN16001 standard accelerates achieving energy savings. Since its introduction, the I.S. EN16001 model for energy management has enabled GSK to monitor, target and identify energy efficiency opportunities throughout the site. The model has put in place an energy management system that is continuously reviewed for improvement and to date has reduced GSK’s site operations cost by over 30% through technical improvements and generating energy awareness for smarter energy consumption within the GSK Cork site. Investment in I.S. EN16001 has proved to be a sound business strategy for GSK especially in today's manufacturing environment.
Resumo:
This study analyses the area of construction and demolition waste (C & D W) auditing. The production of C&DW has grown year after year since the Environmental Protection Agency (EPA) first published a report in 1996 which provided data for C&D W quantities for 1995 (EPA, 1996a). The most recent report produced by the EPA is based on data for 2005 (EPA, 2006). This report estimated that the quantity of C&DW produced for that period to be 14 931 486 tonnes. However, this is a ‘data update’ report containing an update on certain waste statistics so any total provided would not be a true reflection of the waste produced for that period. This illustrates that a more construction site-specific form of data is required. The Department of Building and Civil Engineering in the Galway-Mayo Institute of Technology have carried out two recent research projects (Grimes, 2005; Kelly, 2006) in this area, which have produced waste production indicators based on site-specific data. This involved the design and testing of an original auditing tool based on visual characterisation and the application of conversion factors. One of the main recommendations of these studies was to compare this visual characterisation approach with a photogrammetric sorting methodology. This study investigates the application of photogrammetric sorting on a residential construction site in the Galway region. A visual characterisation study is also carried out on the same project to compare the two methodologies and assess the practical application in a construction site environment. Data collected from the waste management contractor on site was also used to provide further evaluation. From this, a set of waste production indicators for new residential construction was produced: □ 50.8 kg/m2 for new residential construction using data provided by the visual characterisation method and the Landfill Levy conversion factors. □ 43 kg/m2 for new residential construction using data provided by the photogrammetric sorting method and the Landfill Levy conversion factors. □ 23.8 kg/m2 for new residential construction using data provided by Waste Management Contractor (WMC). The acquisition of the data from the waste management contractor was a key element for testing of the information produced by the visual characterisation and photogrammetric sorting methods. The actual weight provided by the waste management contractor shows a significant difference between the quantities provided.
Resumo:
This project explored the possibility of harvesting marketable foliage stems in addition to producing timber from plantations of Larix leptolepis, Cupressus macrocarpa ‘Goldcrest’ and Tsuga heterophylla. Data recorded from trial sites included both growth parameters, in the form of height and diameter increments, and production parameters in the form of foliage stem yields. Results varied with species and site type. In many cases, results achieved appear to have been influenced more by the biology of the trees than by the treatments alone. Trials were also established to investigate methods of managing old or over grown Abies procera Christmas tree plantations for forest foliage production. Shelf life testing and market research into the domestic trade of forest foliage were also conducted over the course of the project. Recommendations for managing forest plantations for foliage production as well as a general discussion on the industry are presented in this report.