2 resultados para Population genetic
em Galway Mayo Institute of Technology, Ireland
Resumo:
The brown crab (Cancer pagurus) fishery in Ireland is one of the most important financially and socio-economically, with the species worth approximately €15m per year in the first half of the decade. Only mackerel (Scomber scombrus) and Dublin Bay prawn (Nephrops norvegicus) are of greater value. Despite this, very little research has been conducted to describe the stock structure of brown crab on a national scale. In this study a country-wide assessment of genetic population structure was carried out. Sampling was conducted from commercial fishing boats from 11/06 to 04/08 at seven sample sites representing the central Irish brown crab fisheries, with one sample site from the UK also included in the study. Six microsatellite markers, specifically developed for brown crab, were used to assess genetic diversity and estimate population differentiation parameters. Significant genetic structuring was found using F-statistics (Fst = 0.007) and exact tests, but not with Bayesian methods. Samples from the UK and Wexford were found to be genetically distinct from all other populations. Three northern populations from Malm Head and Stanton Bank were genetically similar with Fst estimates suggesting connectivity between them. Also, Stanton Bank, again on the basis of Fst estimates, appeared to be connected to populations down the west coast of Ireland, as far south as Kerry. Two Galway samples, one inside and one outside of Galway Bay, were genetically differentiated despite their close geographic proximity. It is hypothesised that a persistent northerly summer current could transport pelagic larvae from populations along the southwest and west coasts of Ireland towards Stanton Bank in the North, resulting in the apparent connectivity observed in this study.
Resumo:
Background: Hereditary haemochromatosis is a heritable disorder caused by an inborn error in the metabolism of iron. It results in over absorption of iron by the body, which can manifest clinically as fatigue, arthritis, diabetes and cardiovascular problems. The highest prevalence for the genetic mutations that cause hereditary haemochromatosis can be found in the Irish population. Individuals with diabetes may also have haemochromatosis (and vice versa), due to the bi-directional relationship between iron metabolism and glucose metabolism. Objectives: To determine the incidence of the three haemochromatosis mutations C282Y, H63D & S65C, in a population from the North West of Ireland and to investigate whether there is an increased frequency of these three mutations in a diabetic population from the same region. Method: DNA was extracted from 500 whole blood samples (250 diabetic samples and 250 ‘control’ samples) using a Wizard™ kit. PCR was conducted utilising specific primers for each mutation and in accordance with a set protocol. Following amplification, PCR product was subjected to restriction endonuclease digestion, where different restriction enzymes (Rsa I, Nde II & Hinf I) were employed to determine the HFE genotype status of samples. Results: The incidence of C282Y homozygosity (1/83) and C282Y heterozygosity (1/6) in the ‘control’ group was similar to those reported for the general Irish population (1/83 and 1/5, respectively). Incidences of H63D homozygotes and H63D heterozygotes or ‘carriers’ in the diabetic population were greater than that of the ‘control’ population. A significant finding of this study was that of an incidence of 1/32 S65C carriers in the control population. This is, to our knowledge, the highest incidence of the genotype reported to date in the general Irish population. Statistical analysis showed that there was no significant differences between the HFE genotype frequencies in the Diabetic and Control Populations. Conclusion: Results of the study concord with published literature in terms of C282Y homozygosity and C282Y heterozygosity in the general Irish population. An increased frequency of the H63D mutation in diabetic individuals was also found but was not statistically significant. The biochemical effect of the H63D mutation is still unknown. The significance of such a high incidence of S65C carriers in the ‘control’ population warrants further investigation.