2 resultados para Morris, Lydia
em Galway Mayo Institute of Technology, Ireland
Resumo:
Background: Hereditary haemochromatosis is a heritable disorder caused by an inborn error in the metabolism of iron. It results in over absorption of iron by the body, which can manifest clinically as fatigue, arthritis, diabetes and cardiovascular problems. The highest prevalence for the genetic mutations that cause hereditary haemochromatosis can be found in the Irish population. Individuals with diabetes may also have haemochromatosis (and vice versa), due to the bi-directional relationship between iron metabolism and glucose metabolism. Objectives: To determine the incidence of the three haemochromatosis mutations C282Y, H63D & S65C, in a population from the North West of Ireland and to investigate whether there is an increased frequency of these three mutations in a diabetic population from the same region. Method: DNA was extracted from 500 whole blood samples (250 diabetic samples and 250 ‘control’ samples) using a Wizard™ kit. PCR was conducted utilising specific primers for each mutation and in accordance with a set protocol. Following amplification, PCR product was subjected to restriction endonuclease digestion, where different restriction enzymes (Rsa I, Nde II & Hinf I) were employed to determine the HFE genotype status of samples. Results: The incidence of C282Y homozygosity (1/83) and C282Y heterozygosity (1/6) in the ‘control’ group was similar to those reported for the general Irish population (1/83 and 1/5, respectively). Incidences of H63D homozygotes and H63D heterozygotes or ‘carriers’ in the diabetic population were greater than that of the ‘control’ population. A significant finding of this study was that of an incidence of 1/32 S65C carriers in the control population. This is, to our knowledge, the highest incidence of the genotype reported to date in the general Irish population. Statistical analysis showed that there was no significant differences between the HFE genotype frequencies in the Diabetic and Control Populations. Conclusion: Results of the study concord with published literature in terms of C282Y homozygosity and C282Y heterozygosity in the general Irish population. An increased frequency of the H63D mutation in diabetic individuals was also found but was not statistically significant. The biochemical effect of the H63D mutation is still unknown. The significance of such a high incidence of S65C carriers in the ‘control’ population warrants further investigation.
Resumo:
Abdominal Aortic Aneurysms (AAA) haemorhaging is a life-threatening disease. An aneurysm is a permanent swelling of an artery due to a weakness in its wall. Current surgical repair involves opening the chest or abdomen, gaining temporary vascular control of the aorta and suturing a prosthetic graft to the healthy aorta within the aneurysm itself The outcome of this surgical approach is not perfect, and the quality of life after this repair is impaired by postoperative pain, sexual dysfunction, and a lengthy hospital stay resulting in high health costs. All these negative effects are related to the large incision and extensive tissue dissection. Endovascular grafting is an alternative to the standard surgical method. This treatment is a less invasive method of treating aortic aneurysms. It involves a surgical exposure of the common femoral arteries where the stent graft can be inserted through by an over-the-wire technique. All manipulations are controlled from a remote place by the use of a catheter and this technique avoids the need to directly expose the diseased artery through a large incision or an extensive dissection. The proposed design method outlined in this project is to develop the endovascular approach. The main aim is to design an unitary bifurcated stent graft (1 e- bifurcated graft as a single component) to treat these Abdominal Aortic Aneurysms. This includes the delivery system and deployment mechanism necessary to first accurately position the stent graft across the aneurysm sac and also across the iliac bifurcation, and secondly fix the stent graft in position by using expandable metal stents. Thus, excluding the aneurysm from the circulation and therefore preventing rupture. Miniaturisation is a critical aspect of this design, as the smaller the crimped stent graft the easier to guide through the vascular system to the desired location. Biocompatibility is an important aspect. The preferred materials for this prosthesis are to use Shape Memory Alloys for the stent and a multifilament fabric for the graft. A taper design is applied for the geometry as this gives a favourable flow characteristic and reduced wave reflections. Adequate testing of the stent graft to prove its durability and the ease of the method of deployment is a prerequisite. A bench test facility has being designed and build to replicate the cardiovascular system and the disease in question aortic aneurysms at the iliac bifurcation. The testing here shows the feasibility of the proposed delivery system and the durability of the stent graft across the aneurysm sac. Finally, these endovascular treatments offer the economic advantage of short hospital stays or even treatment as an outpatient, as well as elimination of the need for postoperative intensive care The risk of developing an aneurysm increases with age, that is one of the mam reasons to look for less invasive ways of treating aneurysms. Consequently, there is enormous pressure to develop and use these devices rapidly.