9 resultados para Minorities in engineering
em Galway Mayo Institute of Technology, Ireland
Resumo:
The research conducted for this thesis has been carried out over a two year period as part of the Mobile Tools and Technology for customer care (MOTTO) project. The project was funded under the Applied Grant scheme administered by Enterprise Ireland and Nortel Networks Ltd. It was a partnership project between Galway-Mayo Institute of Technology, University of Limerick, National University of Ireland Galway, and a global Internet and communications company, Nortel Networks. The project aimed to investigate the enabling mobile communications technologies in e-Business and mobile communications in the area of Business-to-Business (B2B) customer care. The development of the application discussed in this thesis was developed in conjunction with the Galway-Mayo Institute of Technology, University of Limerick and AMT Ireland. The decision to develop the application in the Electronics Company of AMT in Limerick came about as a result of the contact established by Mark Southern from the University of Limerick. Mark was involved in overseeing the development and assisted in establishing the user requirements.
Resumo:
This thesis is a continuation of the Enterprise-Ireland Research Innovation Fund (RIF) Project entitled’ "Design and Manufacturing of Customised Maxillo-Facial Prostheses" The primary objective of this Internal Research Development Program (IRDP) project was to investigate two fundamental design changes 1 To incorporate the over-denture abutments directly into the implant. 2 To remove the restraining wings by the addition of screws, which affix the. implant to the dense material of the jawbone. The prosthetic was redesigned using the ANSYS Finite Element Analysis software program and analysed to* • Reduce the internal von Mises stress distribution The new prosthetic had a -63.63 % lower von Mises stress distribution when compared with the original prosthetic. • Examine the screw preload effects. A maximum relative displacement of 22 6 * lO^mm between the bone and screw was determined, which is well below the critical threshold of micromotion which prevents osseointegration • Investigate the prosthetic-bone contact interface. Three models of the screw, prosthesis, and bone, were studied. (Axisymmetnc, quarter volume, and full volume), a recommended preload torque of 0 32 Nm was applied to the prosthetic and a maximum von Mises stress of 1.988 MPa was predicted • Study the overdenture removal forces. This analysis could not be completed because the correct plastic multilinear properties of the denture material could not be established The redesigned prosthetic was successfully manufactured on a 3-axis milling machine with an indexing system The prosthetic was examined for dimensional quality and strength The research established the feasibility of the new design and associated manufacturing method.
Resumo:
Driven by concerns about rising energy costs, security of supply and climate change a new wave of Sustainable Energy Technologies (SET’s) have been embraced by the Irish consumer. Such systems as solar collectors, heat pumps and biomass boilers have become common due to government backed financial incentives and revisions of the building regulations. However, there is a deficit of knowledge and understanding of how these technologies operate and perform under Ireland’s maritime climate. This AQ-WBL project was designed to address both these needs by developing a Data Acquisition (DAQ) system to monitor the performance of such technologies and a web-based learning environment to disseminate performance characteristics and supplementary information about these systems. A DAQ system consisting of 108 sensors was developed as part of Galway-Mayo Institute of Technology’s (GMIT’s) Centre for the Integration of Sustainable EnergyTechnologies (CiSET) in an effort to benchmark the performance of solar thermal collectors and Ground Source Heat Pumps (GSHP’s) under Irish maritime climate, research new methods of integrating these systems within the built environment and raise awareness of SET’s. It has operated reliably for over 2 years and has acquired over 25 million data points. Raising awareness of these SET’s is carried out through the dissemination of the performance data through an online learning environment. A learning environment was created to provide different user groups with a basic understanding of a SET’s with the support of performance data, through a novel 5 step learning process and two examples were developed for the solar thermal collectors and the weather station which can be viewed at http://www.kdp 1 .aquaculture.ie/index.aspx. This online learning environment has been demonstrated to and well received by different groups of GMIT’s undergraduate students and plans have been made to develop it further to support education, awareness, research and regional development.
Resumo:
The research described in this thesis was developed as part o f the Information Management for Green Design (IMA GREE) Project. The 1MAGREE Project was founded by Enterprise Ireland under a Strategic Research Grant Scheme as a partnership project between Galway Mayo Institute o f Technology and C1MRU University College Galway. The project aimed to develop a CAD integrated software tool to support environmental information management for design, particularly for the electronics-manufacturing sector in Ireland.
Resumo:
The research described in this thesis was developed as part of the Information Management for Green Design (IMAGREE) Project. The IMAGREE Project was funded by Enterprise Ireland under Strategic Research Grant Scheme as a partnership project between Galway-Mayo Institute of Technology and CIMRU University of Galway. The project aimed to develop a CAD integrated software tool to support environmental information management for design.
Resumo:
Abdominal Aortic Aneurysms (AAA) haemorhaging is a life-threatening disease. An aneurysm is a permanent swelling of an artery due to a weakness in its wall. Current surgical repair involves opening the chest or abdomen, gaining temporary vascular control of the aorta and suturing a prosthetic graft to the healthy aorta within the aneurysm itself The outcome of this surgical approach is not perfect, and the quality of life after this repair is impaired by postoperative pain, sexual dysfunction, and a lengthy hospital stay resulting in high health costs. All these negative effects are related to the large incision and extensive tissue dissection. Endovascular grafting is an alternative to the standard surgical method. This treatment is a less invasive method of treating aortic aneurysms. It involves a surgical exposure of the common femoral arteries where the stent graft can be inserted through by an over-the-wire technique. All manipulations are controlled from a remote place by the use of a catheter and this technique avoids the need to directly expose the diseased artery through a large incision or an extensive dissection. The proposed design method outlined in this project is to develop the endovascular approach. The main aim is to design an unitary bifurcated stent graft (1 e- bifurcated graft as a single component) to treat these Abdominal Aortic Aneurysms. This includes the delivery system and deployment mechanism necessary to first accurately position the stent graft across the aneurysm sac and also across the iliac bifurcation, and secondly fix the stent graft in position by using expandable metal stents. Thus, excluding the aneurysm from the circulation and therefore preventing rupture. Miniaturisation is a critical aspect of this design, as the smaller the crimped stent graft the easier to guide through the vascular system to the desired location. Biocompatibility is an important aspect. The preferred materials for this prosthesis are to use Shape Memory Alloys for the stent and a multifilament fabric for the graft. A taper design is applied for the geometry as this gives a favourable flow characteristic and reduced wave reflections. Adequate testing of the stent graft to prove its durability and the ease of the method of deployment is a prerequisite. A bench test facility has being designed and build to replicate the cardiovascular system and the disease in question aortic aneurysms at the iliac bifurcation. The testing here shows the feasibility of the proposed delivery system and the durability of the stent graft across the aneurysm sac. Finally, these endovascular treatments offer the economic advantage of short hospital stays or even treatment as an outpatient, as well as elimination of the need for postoperative intensive care The risk of developing an aneurysm increases with age, that is one of the mam reasons to look for less invasive ways of treating aneurysms. Consequently, there is enormous pressure to develop and use these devices rapidly.
Resumo:
The research described in this thesis has been developed as a part of the Reliability and Field Data Management for Multi-component Products (REFIDAM) Project. This project was founded under the Applied Research Grants Scheme administered by Enterprise Ireland. The project was a partnership between Galway-Mayo Institute of Technology and Thermo King Europe. The project aimed to develop a system in order to manage the information required for reliability assessment and improvement of multi-component products, by establishing information flows within the company and information exchange with fleet users.
Resumo:
The research described in this thesis has been developed as a part of the Reliability and Field Data Management for Multi-Component Products (REFIDAM) Project. This project was funded under the Applied Research Grants Scheme administered by Enterprise Ireland. The project was a partnership between Galway-Mayo Institute of Technology and an industrial company, Thermo King Europe. The project aimed to develop a system to manage the information required for maintenance costing, cost of ownership, reliability assessment and improvement of multi-component products, by establishing information flows between the customer network and across the Thermo King organisation.
Resumo:
This project was funded under the Applied Research Grants Scheme administered by Enterprise Ireland. The project was a partnership between Galway - Mayo Institute of Technology and an industrial company, Tyco/Mallinckrodt Galway. The project aimed to develop a semi - automatic, self - learning pattern recognition system capable of detecting defects on the printed circuits boards such as component vacancy, component misalignment, component orientation, component error, and component weld. The research was conducted in three directions: image acquisition, image filtering/recognition and software development. Image acquisition studied the process of forming and digitizing images and some fundamental aspects regarding the human visual perception. The importance of choosing the right camera and illumination system for a certain type of problem has been highlighted. Probably the most important step towards image recognition is image filtering, The filters are used to correct and enhance images in order to prepare them for recognition. Convolution, histogram equalisation, filters based on Boolean mathematics, noise reduction, edge detection, geometrical filters, cross-correlation filters and image compression are some examples of the filters that have been studied and successfully implemented in the software application. The software application developed during the research is customized in order to meet the requirements of the industrial partner. The application is able to analyze pictures, perform the filtering, build libraries, process images and generate log files. It incorporates most of the filters studied and together with the illumination system and the camera it provides a fully integrated framework able to analyze defects on printed circuit boards.