6 resultados para Lawrenceville Refinery Site (Lawrence County, Ill.)
em Galway Mayo Institute of Technology, Ireland
Resumo:
The aim of the project was to determine the extent and quality of the groundwater in Tipperary South Riding with a view to developing a groundwater protection plan which would allow the Local Authority to manage, protect and develop the groundwater as efficiently as possible. The geology of the area varies with topography. The low-lying areas of the county comprise mainly Carboniferous limestones while the elevated regions consist of sandstones and shales of Upper Carboniferous, Devonian and Silurian ages. Deformation of these rocks decreases in magnitude moving northwards over the area; the Southern Synclines having suffered the effects of the Hercynian orogeny and the northern region exhibiting Caledonian orogenic trends. Quaternary (subsoil) deposits are found throughout the area and are of variable thickness and permeability. Till is the most widespread deposit with discontinuous pockets of sand and gravel in various proportions, and some marl, alluvium and peat in places. The principal aquifers of the area are the Kiltorcan sandstone formation and various limestone units within the Carboniferous succession. 50 % of south Tipperary constitutes either regionally or locally important aquifers. Secondary permeabilities created by structural deformation, dolomitisation, karstification and weathering processes create high transmissivities and often have large well yields. Specific baseflow analysis highlighted the complexity of the aquifers and proved that the lower part of the Suir river system is a major groundwater resource region. The hydrochemistry and water quality of the local authority groundwater sources was examined briefly. The majority of south Tipperary is underlain by limestone or Quaternary deposits derived from limestone and, consequently, calcium/magnesium bicarbonate waters predominate. The quality of the groundwater in south Tipperary demonstrates that the main concern originates from the presence of E.coli, and Total coliforms. The primary sources of contamination are from farmyard wastes and septic tanks. The vulnerability of groundwater to diffuse and point sources of pollution has been found to be dependent on the overlying soil, subsoil and the thickness of the unsaturated zone. A conceptual rather than quantitative approach is used and it is found that approximately 60% of south Tipperary is designated as being extremely or highly vulnerable. The groundwater protection plan was devised subsequent to an understanding of the aquifer systems, an assessment of the vulnerability, and a review of the Irish planning system and environmental law. It is recommended that the plan be integrated into the county development plan for legislative purposes. A series of acceptability matrices were devised to restrict potentially polluting activities in vulnerable areas while maintaining a balance between protection of the groundwater resource and the need to site essential developments.
Resumo:
Construction and demolition waste management is becoming increasingly important on construction sites as landfill space in Ireland is rapidly depleting and waste management costs are rising. Due to these factors waste management plans are seen as a good response to minimising waste on site and this thesis aims to investigate how to implement such a plan on a practical case study as well as investigating the legislation regarding construction and demolition waste along with market availability for the reuse of the waste. Main contractor surveys were also carried out in order to gain a better understanding of current attitudes within the industry and these surveys are analysed in chapter five. A survey was also carried out among sub-contractors but this survey has not been used for this thesis as the study is on-going. The primary aim of this thesis is to examine the waste hierarchy opportunities that are available for construction and demolition waste in Ireland and to examine the effects of management strategies on construction and demolition waste reduction at the project level. A partnership was developed with Carey Developments Ltd in Co. Galway and an analysis of their waste management practices was undertaken. The primary case study will be the ‘Taylors Hill’ project in Co. Galway where work commenced in March, 2012. The secondary aim of the thesis is to develop specific waste minimisation strategies for the company and to develop a training tool kit for use on site.
Resumo:
Sustainable Development requires appropriate and continuous planning and management of economic, socio cultural and environmental resources. Tourism planning calls for continuous collaboration among tourism agencies, local authorities and local communities for success of the industry. While evidence suggests that tourism planning has been extensively documented, it is apparent that Donegal and Sligo County Councils have, in some cases failed to adequately address the significance of planning of the tourism industry for the North West of Ireland. This was investigated through interviews with chief planners of Donegal and Sligo county councils and was conducted in conjunction with the analysis of county development plans; which were formulated by both organisations involved in this study. Evidence suggests that although tourism is extensively documented by Donegal and Sligo county councils, neither of the two local authorities have developed implementation strategies to facilitate the promotion of sustainable tourism development. This research compares and analyses Donegal and Sligo county councils and how they plan for sustainable tourism development. It outlines the role of the county councils in relation to tourism planning and how Donegal and Sligo compare in how they plan for such a significant industry in the North West o f Ireland. It highlights the importance of implementation tools and methods and offers future directions that can assist in the development of sustainable tourism.
Resumo:
This thesis details the findings of a study into the spatial distribution and speciation of 238U, 226Ra and 228Ra in the soils of the Cronamuck valley, County Donegal . The region lies on the north-eastern edge of the Barnesmore granite and has been the subject of uranium prospecting efforts in the past. The results of the project provide information on the practicability of geostatistical techniques as a means of estimating the spatial distribution of natural radionuclides and provide insight into the behaviour of these nuclides and their modes of occurrence and enrichment in an upland bog environment. The results of the geostatistical survey conducted on the area indicate that the primary control over the levels of the studied nuclides in the soil of the valley is the underlying geology. Isopleth maps of nuclide levels in the valley indicate a predominance of elevated nuclide levels in the samples drawn from the granite region, statistical analysis of the data indicating that levels of the nuclides in samples drawn from the granite are greater than levels drawn from the non-granite region by up to a factor of 4.6 for 238U and 4.9 for 226Ra. Redistribution of the nuclides occurs via drainage systems within the valley, this process being responsible for transport of nuclides away from the granite region resulting in enrichment of nuclides in soils not underlain by the granite. Distribution of the nuclides within the valley is erratic, the effect of drainage f lows on the nuclides resulting in localized enriched areas within the valley. Speciation of the nuclides within one of the enriched areas encountered in the study indicates that enrichment is as a result of saturation of the soil with drainage water containing trace amounts of radionuclides. 238U is primarily held within the labile fractions (exchangeable cat ions + easily oxidisable organics + amorphous iron oxides ) of the soil , 226Ra being associated with the non- labile fractions, most probably the resistant organic material. 228Ra displays a significant occurrence in both the labile and non- labile fractions. The ability of the soil to retain uranium appears to be affected largely by the redox status of the soil, samples drawn from oxidizing environments tending to have little or no uranium in the easily oxidisable and amorphous iron oxide fractions. This loss of uranium from oxidised soil samples is responsible for the elevated 226Ra /238U disequilibrium encountered in the enriched areas of the valley. Analysis of the data indicates that samples displaying elevated 226Ra/238U ratios also exhibit elevated 228Ra/238U ratios indicating a loss of uranium from the samples as opposed to an enrichment of 226Ra.
Resumo:
This study analyses the area of construction and demolition waste (C & D W) auditing. The production of C&DW has grown year after year since the Environmental Protection Agency (EPA) first published a report in 1996 which provided data for C&D W quantities for 1995 (EPA, 1996a). The most recent report produced by the EPA is based on data for 2005 (EPA, 2006). This report estimated that the quantity of C&DW produced for that period to be 14 931 486 tonnes. However, this is a ‘data update’ report containing an update on certain waste statistics so any total provided would not be a true reflection of the waste produced for that period. This illustrates that a more construction site-specific form of data is required. The Department of Building and Civil Engineering in the Galway-Mayo Institute of Technology have carried out two recent research projects (Grimes, 2005; Kelly, 2006) in this area, which have produced waste production indicators based on site-specific data. This involved the design and testing of an original auditing tool based on visual characterisation and the application of conversion factors. One of the main recommendations of these studies was to compare this visual characterisation approach with a photogrammetric sorting methodology. This study investigates the application of photogrammetric sorting on a residential construction site in the Galway region. A visual characterisation study is also carried out on the same project to compare the two methodologies and assess the practical application in a construction site environment. Data collected from the waste management contractor on site was also used to provide further evaluation. From this, a set of waste production indicators for new residential construction was produced: □ 50.8 kg/m2 for new residential construction using data provided by the visual characterisation method and the Landfill Levy conversion factors. □ 43 kg/m2 for new residential construction using data provided by the photogrammetric sorting method and the Landfill Levy conversion factors. □ 23.8 kg/m2 for new residential construction using data provided by Waste Management Contractor (WMC). The acquisition of the data from the waste management contractor was a key element for testing of the information produced by the visual characterisation and photogrammetric sorting methods. The actual weight provided by the waste management contractor shows a significant difference between the quantities provided.
Resumo:
The overall purpose of this study was to develop a thorough inspection regime for onsite wastewater treatment systems, which is practical and could be implemented on all site conditions across the country. With approximately 450,000 onsite wastewater treatment systems in Ireland a risk based methodology is required for site selection. This type of approach will identify the areas with the highest potential risk to human health and the environment and these sites should be inspected first. In order to gain the required knowledge to develop an inspection regime in-depth and extensive research was earned out. The following areas of pertinent interest were examined and reviewed, history of domestic wastewater treatment, relevant wastewater legislation and guidance documents and potential detrimental impacts. Analysis of a questionnaire from a prior study, which assessed the resources available and the types of inspections currently undertaken by Local authorities was carried out. In addition to the analysis of the questionnaire results, interviews were carried out with several experts involved in the area of domestic wastewater treatment. The interview focussed on twelve key questions which were directed towards the expert’s opinions on the vital aspects of developing an inspection regime. The background research, combined with the questionnaire analysis and information from the interviews provided a solid foundation for the development of an inspection regime. Chapter 8 outlines the inspection regime which has been developed for this study. The inspection regime includes a desktop study, consultation with the homeowners, visual site inspection, non-invasive site tests, and inspection of the treatment systems. The general opinion from the interviews carried out, was that a standardised approach for the inspections was necessary. For this reason an inspection form was produced which provides a standard systematic approach for inspectors to follow. This form is displayed in Appendix 3. The development of a risk based methodology for site selection was discussed and a procedure similar in approach to the Geological Survey of Irelands Groundwater Protection Schemes was proposed. The EPA is currently developing a risk based methodology, but it is not available to the general public yet. However, the EPA provided a copy of a paper outlining the key aspects of their methodology. The methodology will use risk maps which take account of the following parameters: housing density, areas with inadequate soil conditions, risk of water pollution through surface and subsurface pathways. Sites identified with having the highest potential risk to human health and the environment shall be inspected first. Based on the research carried out a number of recommendations were made which are outlined in Chapter 10. The principle conclusion was that, if these systems fail to operate satisfactorily, home owners need to understand that these systems dispose of the effluent to the 'ground' and the effluent becomes part of the hydrological cycle; therefore, they are a potential hazard to the environment and human health. It is the owners, their families and their neighbours who will be at most immediate risk.