2 resultados para GROWTH POTENTIAL

em Galway Mayo Institute of Technology, Ireland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plaice (Pleuronectes platessa, L.) and dab (Limanda limanda, L.) are among the most abundant flatfishes in the north-eastern Atlantic region and the dominant species in shallow coastal nursery grounds. With increasing pressures on commercial flatfish stocks in combination with changing coastal environments, better knowledge of population dynamics during all life stages is needed to evaluate variability in year-class strength and recruitment to the fishery. The aim of this research was to investigate the complex interplay of biotic and abiotic habitat components influencing the distribution, density and growth of plaice and dab during the vulnerable juvenile life stage and to gain insight in spatial and temporal differences in nursery habitat quality along the west coast of Ireland. Intraspecific variability in plaice diet was observed at different spatial scales and showed a link with condition, recent growth and morphology. This highlights the effect of food availability on habitat quality and the need to consider small scale variation when attempting to link habitat quality to feeding, growth and condition of juvenile flatfish. There was evidence of trophic, spatial and temporal resource partitioning between juvenile plaice and dab allowing the co-existence of morphologically similar species in nursery grounds. In the limited survey years there was no evidence that the carrying capacity of the studied nursery grounds was reached but spatial and interannual variations in fish growth indicated fluctuating environments in terms of food availability, predator densities, sediment features and physico-chemical conditions. Predation was the most important factor affecting habitat quality for juvenile plaice and dab with crab densities negatively correlated to fish condition whereas shrimp densities were negatively associated with densities of small-sized juveniles in spring. A comparison of proxies for fish growth showed the advantage of Fulton’s K for routine use whereas RNA:DNA ratios proved less powerful when short-term environmental fluctuations are lacking. This study illustrated how distinct sets of habitat features can drive spatial variation in density and condition of juvenile flatfish highlighting the value of studying both variables when modeling habitat requirements. The habitat models generated in this study also provide a powerful tool to predict potential climate and anthropogenic impacts on the distribution and condition of juveniles in flatfish nurseries. The need for effective coastal zone management was emphasized to ensure a sustainable use of coastal resources and successful flatfish recruitment to the fishery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Almost half of Ireland’s commercial stocks face overexploitation. As traditional species decrease in abundance and become less profitable, the industry is increasingly turning to alternate species. Atlantic saury (Scomberesox saurus saurus (Walbaum)) has been identified as a potential species for exploitation. Very little information is available on its biology or population dynamics, especially for Irish waters. This thesis aims to obtain sound scientific data, which will help to ensure that a future Atlantic saury fishery can be sustainably managed. The research has produced valuable data, some of which contradicts previous studies. Growth of Atlantic saury measured using otolith microstructure is found to be more than twice that previously calculated from annual structures on scales and otoliths. This results in a significant reduction of the expected life span from five to about two years. Investigation of maturity stage at age indicates that Atlantic saury will reproduce for the first time at age one and will survive for one or at most two reproduction seasons. It is concluded that a future Irish fishery will target mostly fish prior to their first reproduction. Finally the thesis gives some insights into the population structure of Atlantic saury, by analysis of otolith morphometric. Significant differences are detected between Northeastern Atlantic and western Mediterranean Sea specimens of the 0+ age class (less than one year old). The implications of these results for the management of an emerging fishery are discussed.