2 resultados para GENERATION MEANS ANALYSIS
em Galway Mayo Institute of Technology, Ireland
Resumo:
The objective of this dissertation is to investigate the effect wind energy has on the Electricity Supply Industry in Ireland. Wind power generation is a source of renewable energy that is in abundant supply in Ireland and is fast becoming a resource that Ireland is depending on as a diverse and secure of supply of energy. However, wind is an intermittent resource and coupled with a variable demand, there are integration issues with balancing demand and supply effectively. To maintain a secure supply of electricity to customers, it is necessary that wind power has an operational reserve to ensure appropriate backup for situations where there is low wind but high demand. This dissertation examines the affect of this integration by comparing wind generation to that of conventional generation in the national grid. This is done to ascertain the cost benefits of wind power generation against a scenario with no wind generation. Then, the analysis examines to see if wind power can meet the pillars of sustainability. This entails looking at wind in a practical scenario to observe how it meets these pillars under the criteria of environmental responsibility, displacement of conventional fuel, cost competitiveness and security of supply.
Resumo:
This thesis details the findings of a study into the spatial distribution and speciation of 238U, 226Ra and 228Ra in the soils of the Cronamuck valley, County Donegal . The region lies on the north-eastern edge of the Barnesmore granite and has been the subject of uranium prospecting efforts in the past. The results of the project provide information on the practicability of geostatistical techniques as a means of estimating the spatial distribution of natural radionuclides and provide insight into the behaviour of these nuclides and their modes of occurrence and enrichment in an upland bog environment. The results of the geostatistical survey conducted on the area indicate that the primary control over the levels of the studied nuclides in the soil of the valley is the underlying geology. Isopleth maps of nuclide levels in the valley indicate a predominance of elevated nuclide levels in the samples drawn from the granite region, statistical analysis of the data indicating that levels of the nuclides in samples drawn from the granite are greater than levels drawn from the non-granite region by up to a factor of 4.6 for 238U and 4.9 for 226Ra. Redistribution of the nuclides occurs via drainage systems within the valley, this process being responsible for transport of nuclides away from the granite region resulting in enrichment of nuclides in soils not underlain by the granite. Distribution of the nuclides within the valley is erratic, the effect of drainage f lows on the nuclides resulting in localized enriched areas within the valley. Speciation of the nuclides within one of the enriched areas encountered in the study indicates that enrichment is as a result of saturation of the soil with drainage water containing trace amounts of radionuclides. 238U is primarily held within the labile fractions (exchangeable cat ions + easily oxidisable organics + amorphous iron oxides ) of the soil , 226Ra being associated with the non- labile fractions, most probably the resistant organic material. 228Ra displays a significant occurrence in both the labile and non- labile fractions. The ability of the soil to retain uranium appears to be affected largely by the redox status of the soil, samples drawn from oxidizing environments tending to have little or no uranium in the easily oxidisable and amorphous iron oxide fractions. This loss of uranium from oxidised soil samples is responsible for the elevated 226Ra /238U disequilibrium encountered in the enriched areas of the valley. Analysis of the data indicates that samples displaying elevated 226Ra/238U ratios also exhibit elevated 228Ra/238U ratios indicating a loss of uranium from the samples as opposed to an enrichment of 226Ra.