2 resultados para Chemical weathering.

em Galway Mayo Institute of Technology, Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Historically, shifts to reduced and no-tillage management for production of crops were fostered by needs to decrease soil erosion and loss of organic matter, reduce fuel and labour costs and conserve soil water, as compared with conventional fallow tillage management. Recent interest in maintaining soil quality has been stimulated by a renewed awareness of the importance of soil condition to both the sustainability of agricultural production systems and environmental quality (Doran and Parkin, 1996). The aim of this project was to determine the impact on the physical, chemical and microbiological status of the soil of conventional and reduced tillage. It has been suggested that the reduced soil disturbance associated with the tine cultivator improves soil structure, increases nutrient content in the top 10cm of soil, increases microbial activity and improves physical characteristics. From this study it was determined that the environmental benefits linked to reduced tillage in literature, did not develop in the first two years of this programmes implementation. The results of this study determined that soil nutrients did not increase in concentration in the top 10 cm of soil under reduced cultivation. The only exception was exchangeable potassium. As potassium is not a mobile nutrient its movement is dependent on soil disturbance, therefore under reduced cultivation its concentration was allowed to accumulate in the upper horizon of the soil profile. Microbial activity was greater in the conventionally tilled treatments, as determined by total aerobic bacterial numbers. This could be due to the increased rates of soil aeration in this treatment. Numbers of aerobic bacteria were greater in the conventional tillage treatments at both incubation temperatures of 22 and 32° C. The physical characteristics of the soil determined, indicate that below the depth of soil cultivation, cone penetration resistance increases. Therefore the reduced cultivation treatments would be more prone to soil compaction, higher in the soil profile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have shown that septic tank systems are a major source of groundwater pollution. Many public health workers feel that the most cri^cal aspect of the use of septic tanks as a means of sewage disposal is the contamination of private water wells with attendant human health hazards. In this study the movement and attenuation of septic tank effluents in a range of soil/overburden types and hydrogeological situations was investigated. The suitability of a number of chemical and biological tracer materials to monitor the movement of septic tank effluent constituents to groundwater sources was also examined. The investigation was divided into three separate but inteiTelated sections. In the first section of the study the movement of septic tank effluent from two soil treatment systems was investigated by direct measurements of soil nutrient concentrations and enteric bacterial numbers in the soil beneath and downgradient of the test systems. Two sites with different soil types and hydrogeological characteristics were used. The results indicated that the attenuation of the effluent in both of the treatment systems was incomplete. Migration of nitrate, ammonium, phosphate and fecal bacteria to a depth of 50 cm beneath the inverts of the distribution tiles was demonstrated on all sampling occasions. The lateral migration of the pollutants was less pronounced, although on occasions high nutrients levels and fecal bacterial numbers were detected at a lateral distance of 4.0 m downgradient of the test systems. There was evidence that the degree and extent of effluent migration was increased after periods of heavy or prolonged rainfall when the attenuating properties of the treatment systems were reduced as a result of saturation of the soil. The second part of the study examined the contamination of groundwaters downgradient of septic tank soil treatment systems. Three test sites were used in the investigation. The sites were chosen because of differences in the thicknesses and nature of the unsaturated zone available for effluent attenuation at each of the locations. A series of groundwater monitoring boreholes were installed downgradient of the test systems at each of the sites and these were sampled regularly to assess the efficiency of the overburden material in reducing the polluting potential of the wastewater. Effluent attenuation in the septic tank treatment systems was shown to be incomplete, resulting in chemical and microbiological contamination of the groundwaters downgradient of the systems. The nature and severity of groundwater contamination was dependent on the composition and thickness of the unsaturated zone and the extent of weathering in the underlying saturated bedrock. The movement of septic tank effluent through soil/overburdens to groundwater sources was investigated by adding a range of chemical and biological tracer materials to the three septic tank systems used in section two of the study. The results demonstrated that a single tracer type cannot be used to accurately monitor the movement of all effluent constituents through soils to groundwater. The combined use of lithium bromide and endospores of Bacillus globigii was found to give an accurate indication of the movement of both the chemical and biological effluent constituents.