2 resultados para CATCHMENT-AREA
em Galway Mayo Institute of Technology, Ireland
Resumo:
The vulnerability to pollution and hydrochemical variation of groundwater in the mid-west karstic lowlands of Ireland were investigated from October 1992 to September 1993, as part of an EU STRIDE project at Sligo Regional Technical College. Eleven springs were studied in the three local authority areas of Co. Galway, Co. Mayo, and Co. Roscommon. Nine of the springs drain locally or regionally important karstic aquifers and two drain locally important sand and gravel aquifers. The maximum average daily discharge of any of the springs was 16,000 m3/day. Determination of the vulnerability of groundwater to pollution relies heavily on an examination of subsoil deposits in an area since they can act as a protecting or filtering layer over groundwater. Within aquifers/spring catchments, chemical reactions such as adsorption, solution-precipitation or acid-base reactions occur and modify the hydrochemistry of groundwater (Lloyd and Heathcote, 1985). The hydrochemical processes) that predominate depend cm the mineralogy of the aquifer, the hydrogeological environment, the overlying subsoils, and the history of groundwater movement. The aim of this MSc research thesis was to investigate the hydrochemical variation of spring outflow and to assess the relationship between these variations and the intrinsic vulnerability of the springs and their catchments. If such a relationship can be quantified, then it is hoped that the hydrochemical variation of a spring may indicate the vulnerability of a spring catchment without the need for determining it by field mapping. Such a method would be invaluable to any of the three local authorities since they would be able to prioritise sources that are most at risk from pollution, using simple techniques of chemical sampling, and statistical analysis. For each spring a detailed geological, hydrogeological and hydrochemical study was carried out. Individual catchment areas were determined with a water balance/budget and groundwater tracing. The subsoils geology for each spring catchment were mapped at the 1:10,560 scale and digitised to the 1:25,000 scale with AutoCad™ and Arclnfo™. The vulnerability of each spring was determined using the Geological Survey's vulnerability guidelines. Field measurements and laboratory based chemistry analyses of the springs were undertaken by personnel from both the EPA Regional Laboratory in Castlebar, Co. Mayo, and the Environment Section of Roscommon Co. Council. Electrical conductivity and temperature (°C) were sampled fortnightly, in the field, using a WTW microprocessor conductivity meter. A percentage (%) vulnerability was applied to each spring in order to indicate the areal extent of the four main classes of vulnerability (Extreme, High, Moderate, and Low) which occurred within the confines of each spring catchment. Hydrochemical variation for the springs were presented as the coefficient of variation of electrical conductivity. The results of this study show that a clear relationship exists between the degree of vulnerability of each catchment area as defined by the subsoil cover and the coefficient of variation of EC, with the coefficient of variation increasing as the vulnerability increases. The coefficient of variation of electrical conductivity is considered to be a parameter that gives a good general reflection of the degree of vulnerability occurring in a spring catchment in Ireland's karstic lowlands.
Resumo:
The main objective of this thesis on flooding was to produce a detailed report on flooding with specific reference to the Clare River catchment. Past flooding in the Clare River catchment was assessed with specific reference to the November 2009 flood event. A Geographic Information System was used to produce a graphical representation of the spatial distribution of the November 2009 flood. Flood risk is prominent within the Clare River catchment especially in the region of Claregalway. The recent flooding events of November 2009 produced significant fluvial flooding from the Clare River. This resulted in considerable flood damage to property. There were also hidden costs such as the economic impact of the closing of the N17 until floodwater subsided. Land use and channel conditions are traditional factors that have long been recognised for their effect on flooding processes. These factors were examined in the context of the Clare River catchment to determine if they had any significant effect on flood flows. Climate change has become recognised as a factor that may produce more significant and frequent flood events in the future. Many experts feel that climate change will result in an increase in the intensity and duration of rainfall in western Ireland. This would have significant implications for the Clare River catchment, which is already vulnerable to flooding. Flood estimation techniques are a key aspect in understanding and preparing for flood events. This study uses methods based on the statistical analysis of recorded data and methods based on a design rainstorm and rainfall-runoff model to estimate flood flows. These provide a mathematical basis to evaluate the impacts of various factors on flooding and also to generate practical design floods, which can be used in the design of flood relief measures. The final element of the thesis includes the author’s recommendations on how flood risk management techniques can reduce existing flood risk in the Clare River catchment. Future implications to flood risk due to factors such as climate change and poor planning practices are also considered.