3 resultados para Budgetary Expenditure,
em Galway Mayo Institute of Technology, Ireland
Resumo:
The sustained economic growth that has been experienced in the Irish economy in recent years has relied, to a large extent, on the contribution and performance of those industry sectors that possess the ability to provide high-value-added products and services to domestic and international markets. One such contributor has been the Technology sector. However, the performance of this sector relies upon the availability of the necessary capabilities and competencies for Technology companies to remain competitive. The Expert Group on Future Skills Needs have forecasted future skills shortages in this sector. The purpose of this research has been to examine the extent to which Irish Technology companies are taking measures to meet changing skills requirements, through training and development interventions. Survey research methods (in the form of a mail questionnaire, supported by a Web-based questionnaire) have been used to collect information on the expenditure on, and approach to, training and development in these companies, in addition to the methods, techniques and tools/aids that are used to support the delivery of these activities. The contribution of Government intervention has also been examined. The conclusions have been varied. When the activities of the responding companies are considered in isolation, the picture to emerge is primarily positive. Although the expenditure on training and development is slightly lower than that indicated in previous studies, the results vary by company size. Technical employees are clearly the key focus of training provision, while Senior Managers and Directors, Clerical and Administrative staff and Manual workers are a great deal more neglected in training provision. Expenditure on, and use of, computer-based training methods is high, as is the use of most of the specified techniques for facilitating learning. However, when one considers the extent to which external support (in the form of Government interventions and cooperation with other companies and with education and training providers) is integrated into the overall training practices of these companies, significant gaps in practice are identified. The thesis concludes by providing a framework to guide future training and development practices in the Technology sector.
Resumo:
Energy management is the process of monitoring, controlling and conserving energy in a building or organisation. The main reasons for this are for cost purposes and benefit to the environment. Through various techniques and solutions for lighting, heating, office equipment, the building fabric etc along with a change in people’s attitudes there can be a substantial saving in the amount spent on energy. A good example o f energy waste in GMIT is the lighting situation in the library. All the lights are switched on all day on even in places where that is adequate daylighting, which is a big waste o f energy. Also the lights for book shelves are left on. Surely all these books won’t be searched for all at the one time. It would make much more sense to have local switches that the users can control when they are searching for a particular book. Heating controls for the older parts o f the college are badly needed. A room like 834 needs a TRV to prevent it from overheating as temperatures often reach the high twenties due to the heat from the radiators, computers, solar gains and heat from users o f the room. Also in the old part o f the college it is missing vital insulation, along with not being air tight due to the era when it was built. Pumped bonded bead insulation and sealant around services and gaps can greatly improve the thermal performance o f the building and help achieve a higher BER cert. GMIT should also look at the possibility o f installing a CHP plant to meet the base heating loads. It would meet the requirement o f running 4500 hours a year and would receive some financial support from the Accelerated Capital Allowance. I f people’s attitudes are changed through energy awareness campaigns and a few changes made for more energy efficient equipment, substantial savings can be made in the energy expenditure.
Resumo:
The economic value of flounder from shore angling around Ireland was assessed. Flounder catches from shore angling tournaments around Ireland were related to domestic and overseas shore angling expenditure in order to determine an economic value for the species. Temporal trends in flounder angling catches, and specimen (trophy) flounder reports were also investigated. Flounder was found to be the most caught shore angling species in competitions around Ireland constituting roughly one third of the shore angling competition catch although this did vary by area. The total value of flounder from shore angling tourism was estimated to be of the order of €8.4 million. No significant temporal trends in flounder angling catches and specimen reports were found. Thus there is no evidence from the current study for any decline in flounder stocks. The population dynamics of 0-group flounder during the early benthic stage was investigated at estuarine sites in Galway Bay, west of Ireland. Information was analysed from the March to June sampling period over five years (2002 to 2006). Spatial and temporal variations in settlement and population length structure were analysed between beach and river habitats and sites. Settlement of flounder began from late March to early May of each year, most commonly in April. Peak settlement was usually in April or early May. Settlement was recorded earlier than elsewhere, although most commonly was similar to the southern part of the UK and northern France. Settlement was generally later in tidal rivers than on sandy beaches. Abundance of 0-group flounder in Galway Bay did not exhibit significant inter -annual variability. 0-group flounder were observed in dense aggregations of up to 105 m'2, which were patchy in distribution. Highest densities of 0-group flounder were recorded in limnetic and oligohaline areas as compared with the lower densities in polyhaline and to a lesser extent mesohaline areas. Measurements to of salinity allowed the classification of beaches, and tidal river sections near the mouth, into a salinity based scheme for length comparisons. Beaches were classified as polyhaline,the lower section of rivers as mesohaline, and the middle and upper sections as oligohaline. Over the March to June sampling period 0-group flounder utilised different sections at different length ranges and were significantly larger in more upstream sections. During initial settlement in April, 0-group flounder of 8-10 mm (standard length, SL) were present in abundance on polyhaline sandy beaches. By about 10mm (SL), flounder were present in all polyhaline, mesohaline and (oligohaline) sections. 0-group flounder became absent or in insignificant numbers in polyhaline and mesohaline sections in a matter of weeks after first appearance. From April to June, 0-group flounder of 12-30mm (SL) were found in more upstream locations in the oligohaline sections. About one month (May or June) after initial settlement, 0-group flounder became absent from the oligohaline sections. Concurrently, flounder start to reappear in mesohaline and polyhaline areas at approximately 30mm (SL) in June. The results indicate 0-group flounder in the early benthic stage are associated with low salinity areas, but as they grow, this association diminishes. Results strongly suggest that migration of 0-group flounder between habitats takes place during the early benthic phase.