2 resultados para Adaptive Modelling, Entropy Evolution, Sustainable Design

em Galway Mayo Institute of Technology, Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents the research and development of sustainable design guidelines for the furniture and wood products industry, suitable for sustainably enhancing design, manufacturing and associated activities. This sustainable guideline is based on secondary research conducted on subject areas such as ‘eco’ design, ‘green’ branding and ‘green’ consumerism, as well as an examination of existing certifications and sustainable tools techniques and methodologies, national and international drivers for sustainable development and an overview of sustainability in the Irish furniture manufacturing context. The guideline was further developed through primary research. This consisted of a focus group attended by leading Irish designers, manufacturers and academics in the area of furniture and wood products. This group explored the question of ‘green branding’ saturation in the market and the viability of investing in sustainability just yet. Participants stated that they felt the market for ‘green’ products is evolving very slowly and that there is no metric or legal framework present to audit whether or not companies are producing products that really embody sustainability. All the participants believed that developing and introducing a new certification process to incorporate a sustainable design process was a viable and necessary solution to protecting Irish furniture and wood manufacturers going forward. For the purposes of the case study, the author investigated a ‘sustainabledesign process for Team woodcraft, Ltd., through the design and development of a ‘sustainable’ children’s furniture range. The case study followed a typical design and development process; detailing customer design specifications, concept development and refinement and cumulating in final prototype, as well as associated engineering drawings. Based on this primary and secondary research, seven fundamental core principles for this sustainable guideline have been identified by the author. The author then used these core principles to expand into guidelines for the basis of proposed new Irish sustainable design guidelines for the furniture and wood products industry, the concept of which the author has named ‘Green Dot’. The author suggests that the ‘Green Dot’ brand or logo could be used to market an umbrella network of Irish furniture designers and manufactures who implement the recommended sustainable techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research was conducted to investigate the potential for ecologically engineering a sustainable wetland ecosystem over pyritic mine tailings to prevent the generation of acid mine drainage. Ecological engineering is technology with the primary goal being the creation of self-sustainable ecological systems. Work involved the design and construction of a pilot-scale wetland system comprising three wetland cells, each covering 100 m2. Approximately forty tonnes of pyritic mine tailings were deposited on the base of the first cell above a synthetic liner, covered with peat, flooded and planted with emergent wetland macrophytes Typha latifolia, Phragmites australis, and Juncus effusus. The second cell was constructed as a conventional free water surface wetland, planted identically, and used as a reference wetland/experimental control. Wetland monitoring to determine long-term sustainability focused on indicators of ecosystem health including ecological, hydrological, physico-chemical, geochemical, and biotic metrics. An integrated assessment was conducted that involved field ecology in addition to ecological risk assessment. The objective of the field ecology study was to use vegetative parameters as ecological indicators for documenting wetlands success or degradation. The goal of the risk assessment was to determine if heavy-metal contamination of the wetland sediments occurred through metal mobilisation from the underlying tailings, and to evaluate if subsequent water column chemistry and biotic metal concentrations were significantly correlated with adverse wetland ecosystem impacts. Data were used to assess heavy metal bioavailability within the system as a function of metal speciation in the wetland sediments. Results indicate hydrology is the most important variable in the design and establishment of the tailings wetland and suggest a wetland cover is an ecologically viable alternative for pyritic tailings which are feasible to flood. Ecological data indicate that in terms of species richness and diversity, the tailings-wetland was exhibiting the ecological characteristics of natural wetlands within two years. Ata indicate that pH and conductivity in the tailings-wetland were not adversely impacted by the acid-generating potential or sulphate concentration of the tailings substrate and its porewater. Similarly, no enhanced seasonal impacts from sulphate or metals in the water column, nor adverse impacts on the final water quality of the outflows, were detected. Mean total metal concentrations in the sediments of the tailings-wetland indicate no significant adverse mobilisation of metals into the peat substrate from the tailings. Correlation analyses indicate a general increase in sediment metal concentration in this wetland with increasing water depth and pH, and a corresponding decrease in the metal concentrations of the water column. Sediment extractions also showed enrichment of Cd, Fe, Pb and Zn in the oxidisable fraction (including sulphides and organic matter) of the tailings-wetland sediments. These data suggest that adsorption and coprecipitation of metals is occurring from the water column of the tailings wetland with organic material at increasing depths under reducing conditions. The long-term control of metal bioavailability in the tailings wetland will likely be related to the presence and continual build-up of organic carbon binding sites in the developing wetland above the tailings. Metal speciation including free-metal ion concentration and the impact of physico-chemical parameters particularly pH and organic matter, were investigated to assess ecotoxicological risk. Results indicate that potentially bioavailable metals (the sum of the exchangeable and reducible fractions) within the tailings wetland are similar to values cited for natural wetlands. Estimated free-metal ion concentrations calculated from geochemical regression models indicate lower free-metal ion concentrations of Cd in the tailings wetland than natural wetlands and slightly higher free-metal ion concentrations of Pb and Zn. Increased concentrations of metals in roots, rhizomes and stems of emergent macrophytes did not occur in the tailings wetland. Even though a substantial number of Typha latifolia plants were found rooting directly into tailings, elevated metals were not found in these plant tissues. Phragmites also did not exhibit elevated metal concentrations in any plant tissues. Typha and Phragmites populations appear to be exhibiting metal-tolerant behaviour. The chemistry of the water column and sediments in Silvermines wetland were also investigated and were much more indicative of a wetland system impacted by heavy metal contamination than the tailings-wetland. Mean Dc, Fe, Mn, Pb and Zn concentrations in the water column and sediments of Silvermines wetlands were substantially higher than in the pilot wetlands and closely approximate concentrations in these matrices contaminated with metals from mining. In addition, mean sulphate concentration in Silvermines wetland was substantially higher and is closer to sulphate concentrations in waters associated with mining. Potentially bioavailable metals were substantially elevated in Silvermines wetland in comparison to the pilot wetlands and higher than those calculated for natural rive sediments. However, Fe oxy-hydroxide concentrations in Silvermines sediments are also much higher than in the pilot wetlands and this significantly impacts the concentration of free-metal ions in the sediment porewater. The free-metal ion concentrations for Pb and Zn indicate that Silvermines wetland is retaining metals and acting as a treatment wetland for drainage emanating from Silvermines tailings dam.