9 resultados para Activated-sludge Process
em Galway Mayo Institute of Technology, Ireland
Resumo:
It has been well documented that the optimum feedstock for anaerobic digesters consists of readily biodegradable compounds, as found in primary sludge or even a mixed substrate of primary and excess activated sludge. Due to the requirements of the Urban Wastewater Treatment Plant Directive of 1991, the quantities of secondary sludge generated is set to increase substantially. A pilot scale study was undertaken to evaluate the performance of both Mesophilic Anaerobic Digestion and Thermophilic Aerobic digestion in the treatment of secondary sludge. The results indicated that the anaerobic pilot scale digester achieved a greater solids destruction than the aerobic pilot plant averaging at 28% T.S. removal verses 20% for the aerobic digester, despite the fact that secondary sludge is the optimum feedstock for aerobic digestion. This can, however, be attributed to the greater biomass yield experienced with aerobic systems, and to the absence of Autothermal conditions. At present, the traditional technique of Mesophilic Anaerobic Digestion is in widespread application throughout Ireland, for the stabilisation of sewage sludge. There is only one Autothermal Thermophilic Aerobic Digester at present situated in Killarney, Co. Kerry. A further objectives of the study was to compare full-scale applications of Mesophilic Anaerobic Digestion to ATAD. Two Sludge Treatment plants, situated in Co. Kerry, were used for this purpose, and were assessed mainly under the following headings; process stability, solids reduction on average, the ATAD plant in Killarney has the advantage of producing a “Class A” Biosolid in terms of pathogen reduction, and can effectively treat double the quantity of sludge. In addition, economically the ATAD plant is cheaper to run, costing €190 / t.d.s verses €211 / t.d.s. for the anaerobic digester in Tralee. An overview of additional operational Anaerobic Digestion Plants throughout Ireland is also presented.
Resumo:
This Study assessed the development of sludge treatment and reuse policy since the original 1993 National Sludge Strategy Report (Weston-FTA, 1993). A review of the 48 sludge treatment centres, current wastewater treatment systems and current or planned sludge treatment and reuse systems was carried out Sludges from all Regional Sludge Treatment Centres (areas) were characterised through analysis of selected parameters. There have been many changes to the original policy, as a result of boundary reviews, delays in developing sludge management plans, development in technology and changes in tendering policy, most notably a move to design-build-operate (DBO) projects. As a result, there are now 35 designated Hub Centres. Only 5 of the Hub Centres are producing Class A Biosolids. These are Ringsend, Killamey, Carlow, Navan and Osberstown. Ringsend is the only Hub Centre that is fully operational, treating sludge from surrounding regions by Thermal Drying. Killamey is producing Class A Biosolids using Autothermal Thermophilic Aerobic Digestion (ATAD) but is not, as yet, treating imported sludge. The remaining three plants are producing Class A Biosolids using Alkaline Stabilisation. Anaerobic Digestion with post pasteurisation is the most common form of sludge treatment, with 11 Hub Centres proposing to use it. One plant is using ATAD, two intend to use Alkaline Stabilisation, seven have selected Thermal Drying and three have selected Composting. While the remaining plants have not decided which sludge treatment to select, this is because of incomplete Sludge Management Plans and on DBO contracts. Analysis of sludges from the Hub Centres showed that all Irish sewage sludge is safe for agricultural reuse as defined by the Waste Management Regulations {Use of Sewage Sludge in Agriculture) (S.I. 267/2001), providing that a nutrient management plan is taken into consideration and that the soil limits of the 1998 (S.I. 148/1998) Waste Management Regulations are not exceeded.
Resumo:
As digital imaging processing techniques become increasingly used in a broad range of consumer applications, the critical need to evaluate algorithm performance has become recognised by developers as an area of vital importance. With digital image processing algorithms now playing a greater role in security and protection applications, it is of crucial importance that we are able to empirically study their performance. Apart from the field of biometrics little emphasis has been put on algorithm performance evaluation until now and where evaluation has taken place, it has been carried out in a somewhat cumbersome and unsystematic fashion, without any standardised approach. This paper presents a comprehensive testing methodology and framework aimed towards automating the evaluation of image processing algorithms. Ultimately, the test framework aims to shorten the algorithm development life cycle by helping to identify algorithm performance problems quickly and more efficiently.
Resumo:
A composting Heat Extraction Unit (HEU) was designed to utilise waste heat from decaying organic matter for a variety of heating application The aim was to construct an insulated small scale, sealed, organic matter filled container. In this vessel a process fluid within embedded pipes would absorb thermal energy from the hot compost and transport it to an external heat exchanger. Experiments were conducted on the constituent parts and the final design comprised of a 2046 litre container insulated with polyurethane foam and kingspan with two arrays of qualpex piping embedded in the compost to extract heat. The thermal energy was used in horticultural trials by heating polytunnels using a radiator system during a winter/spring period. The compost derived energy was compared with conventional and renewable energy in the form of an electric fan heater and solar panel. The compost derived energy was able to raise polytunnel temperatures to 2-3°C above the control, with the solar panel contributing no thermal energy during the winter trial and the electric heater the most efficient maintaining temperature at its preset temperature of 10°C. Plants that were cultivated as performance indicators showed no significant difference in growth rates between the heat sources. A follow on experiment conducted using special growing mats for distributing compost thermal energy directly under the plants (Radish, Cabbage, Spinach and Lettuce) displayed more successful growth patterns than those in the control. The compost HEU was also used for more traditional space heating and hot water heating applications. A test space was successfully heated over two trials with varying insulation levels. Maximum internal temperature increases of 7°C and 13°C were recorded for building U-values of 1.6 and 0.53 W/m2K respectively using the HEU. The HEU successfully heated a 60 litre hot water cylinder for 32 days with maximum water temperature increases of 36.5°C recorded. Total energy recovered from the 435 Kg of compost within the HEU during the polytunnel growth trial was 76 kWh which is 3 kWh/day for the 25 days when the HEU was activated. With a mean coefficient of performance level of 6.8 calculated for the HEU the technology is energy efficient. Therefore the compost HEU developed here could be a useful renewable energy technology particularly for small scale rural dwellers and growers with access to significant quantities of organic matter
Resumo:
Surgeons may use a number of cutting instruments such as osteotomes and chisels to cut bone during an operative procedure. The initial loading of cortical bone during the cutting process results in the formation of microcracks in the vicinity of the cutting zone with main crack propagation to failure occuring with continued loading. When a material cracks, energy is emitted in the form of Acoustic Emission (AE) signals that spread in all directions, therefore, AE transducers can be used to monitor the occurrence and development of microcracking and crack propagation in cortical bone. In this research, number of AE signals (hits) and related parameters including amplitude, duration and absolute energy (abs-energy) were recorded during the indentation cutting process by a wedge blade on cortical bone specimens. The cutting force was also measured to correlate between load-displacement curves and the output from the AE sensor. The results from experiments show AE signals increase substantially during the loading just prior to fracture between 90% and 100% of maximum fracture load. Furthermore, an amplitude threshold value of 64dB (with approximate abs-energy of 1500 aJ) was established to saparate AE signals associated with microcracking (41 – 64dB) from fracture related signals (65 – 98dB). The results also demonstrated that the complete fracture event which had the highest duration value can be distinguished from other growing macrocracks which did not lead to catastrophic fracture. It was observed that the main crack initiation may be detected by capturing a high amplitude signal at a mean load value of 87% of maximum load and unsteady crack propagation may occur just prior to final fracture event at a mean load value of 96% of maximum load. The author concludes that the AE method is useful in understanding the crack initiation and fracture during the indentation cutting process.
The appraisal of anaerobic digestion in Ireland to develop improved designs and operational practice
Resumo:
Mesophilic Anaerobic Digestion treating sewage sludge was investigated at five full-scale sewage treatment plants in Ireland. The anaerobic digestion plants are compared and evaluated in terms of design, equipment, operation, monitoring and management. All digesters are cylindrical, gas mixed and heated Continuously Stirred Tank Reactors (CSTR), varying in size from 130m3 to 800m3. Heat exchanger systems heat all digesters. Three plants reported difficulties with the heating systems ranging from blockages to insufficient insulation and design. Exchangers were modified and replaced within one year of operation at two plants. All but one plant had Combined Heat and Power (CHP) systems installed. Parameter monitoring is a problem at all plants mainly due to a lack of staff and knowledge. The plant operators consider pH and temperature the most important parameters to be measured in terms of successful monitoring of an anaerobic digester. The short time taken and the ease at which pH and temperature can be measured may favour these parameters. Three laboratory scale pilot anaerobic digesters were operated using a variety of feeds over at 144-day period. Two of the pilots were unmixed and the third was mechanically mixed. As expected the unmixed reactors removed more COD by retention of solids in the digesters but also produced greater quantities of biogas than the mixed digester, especially when low solids feed such as whey was used. The mixed digester broke down more solids due to the superior contact between the substrate and the biomass. All three reactors showed good performance results for whey and sewage solids. Scum formation occurred giving operational problems for mixed and unmixed reactors when cattle slurry was used as the main feed source. The pilot test was also used to investigate which parameters were the best indicators of process instability. These trials clearly indicated that total Volatile Fatty Acid (VFA) concentrations was the best parameter to show signs of early process imbalance, while methane composition in the biogas was good to indicate possible nutrient deficiencies in the feed and oxygen shocks. pH was found to be a good process parameter only if the wastewater being treated produced low bicarbonate alkalinities during treatment.
Resumo:
Univariate statistical control charts, such as the Shewhart chart, do not satisfy the requirements for process monitoring on a high volume automated fuel cell manufacturing line. This is because of the number of variables that require monitoring. The risk of elevated false alarms, due to the nature of the process being high volume, can present problems if univariate methods are used. Multivariate statistical methods are discussed as an alternative for process monitoring and control. The research presented is conducted on a manufacturing line which evaluates the performance of a fuel cell. It has three stages of production assembly that contribute to the final end product performance. The product performance is assessed by power and energy measurements, taken at various time points throughout the discharge testing of the fuel cell. The literature review performed on these multivariate techniques are evaluated using individual and batch observations. Modern techniques using multivariate control charts on Hotellings T2 are compared to other multivariate methods, such as Principal Components Analysis (PCA). The latter, PCA, was identified as the most suitable method. Control charts such as, scores, T2 and DModX charts, are constructed from the PCA model. Diagnostic procedures, using Contribution plots, for out of control points that are detected using these control charts, are also discussed. These plots enable the investigator to perform root cause analysis. Multivariate batch techniques are compared to individual observations typically seen on continuous processes. Recommendations, for the introduction of multivariate techniques that would be appropriate for most high volume processes, are also covered.
Resumo:
Dairy sludge generated at Glanbia Ingredients Ltd., Kilkenny has up until now been landspread. This study investigated the feasibility of using earthworms to vermicompost the sludge as an alternative method of treatment. It was found that high levels of ammonia in the sludge led to earthworm fatality but that by manually aerating the sludge the ammonia could be volatilised or by adding zeolite the ammonia could be absorbed, thus solving the problem. In a medium scale trial, the earthworm species Dendrobaena veneta and Eisenia fetida dominated the polyculture. Earthworms grew and generated cocoons during vermicomposting. During vermicomposting no leachate was generated. Nutrient changes took place during vermicomposting. There were high levels of nitrate, increased calcium and sulphate in the vermicomposted dairy sludge. The amount of magnesium, potassium and chloride did not change, while phosphate was undetectable after vermicomposting. The levels of nitrate and phosphate were good indicators of the extent of vermicomposting. The vermicomposted dairy sludge provided improved growth and yields of radishes and barley compared to the dairy sludge and control. Compared to the vermicompost, the dairy sludge provided heavier ryegrass yields and more marigolds with larger flower diameters. Generally, it is the amount of phosphate in dairy sludge that dictates how much can be applied as a fertiliser on land. Vermicomposting reduced the amount of phosphate to an undetectable level but on the other hand created a problem of high nitrate levels. In a pot trial with grass grown in vermicompost the nitrate leached from the vermicompost. In field conditions the leaching of nitrate might occur and could cause an increased risk of contamination of groundwater and watercourses.
Resumo:
The impending introduction of lead-free solder in the manufacture of electrical and electronic products has presented the electronics industry with many challenges. European manufacturers must transfer from a tin-lead process to a lead-free process by July 2006 as a result of the publication of two directives from the European Parliament. Tin-lead solders have been used for mechanical and electrical connections on printed circuit boards for over fifty years and considerable process knowledge has been accumulated. Extensive literature reviews were conducted on the topic and as a result it was found there are many implications to be considered with the introduction of lead-free solder. One particular question that requires answering is; can lead-free solder be used in existing manufacturing processes? The purpose of this research is to conduct a comparative study of a tin-lead solder and a lead-free solder in two key surface mount technology (SMT) processes. The two SMT processes in question were the stencil printing process and the reflow soldering process. Unreplicated fractional factorial experimental designs were used to carry out the studies. The quality of paste deposition in terms of height and volume were the characteristics of interest in the stencil printing process. The quality of solder joints produced in the reflow soldering experiment was assessed using x-ray and cross sectional analysis. This provided qualitative data that was then uniquely scored and weighted using a method developed during the research. Nested experimental design techniques were then used to analyse the resulting quantitative data. Predictive models were developed that allowed for the optimisation of both processes. Results from both experiments show that solder joints of comparable quality to those produced using tin-lead solder can be produced using lead-free solder in current SMT processes.