6 resultados para 710201 Waste management

em Galway Mayo Institute of Technology, Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Construction and demolition waste management is becoming increasingly important on construction sites as landfill space in Ireland is rapidly depleting and waste management costs are rising. Due to these factors waste management plans are seen as a good response to minimising waste on site and this thesis aims to investigate how to implement such a plan on a practical case study as well as investigating the legislation regarding construction and demolition waste along with market availability for the reuse of the waste. Main contractor surveys were also carried out in order to gain a better understanding of current attitudes within the industry and these surveys are analysed in chapter five. A survey was also carried out among sub-contractors but this survey has not been used for this thesis as the study is on-going. The primary aim of this thesis is to examine the waste hierarchy opportunities that are available for construction and demolition waste in Ireland and to examine the effects of management strategies on construction and demolition waste reduction at the project level. A partnership was developed with Carey Developments Ltd in Co. Galway and an analysis of their waste management practices was undertaken. The primary case study will be the ‘Taylors Hill’ project in Co. Galway where work commenced in March, 2012. The secondary aim of the thesis is to develop specific waste minimisation strategies for the company and to develop a training tool kit for use on site.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This project focuses on the EU Landfill Directive targets for Biodegradable Municipal Waste (BMW) specifically focusing on how the targets will affect Ireland and its waste management infrastructure. Research will consist of reviewing relevant literature, legislation and policies that will provide a comparable between Ireland and other nations. Planning processes which govern both the building structure and running capacities of treatment facilities is also necessary in order to predict amounts of waste diverted from landfill. The efficiency of these treatment plants also requires investigation. Another objective is to research further information on Irelands organic ‘brown’ bin service, this will involve discovering the roll out of bins in the future over a defined time scale as well as the potential amounts of waste that will be collected. Figures received from waste management and waste treatment companies will be combined with figures from the Environmental Protection Agency’s (EPA) annual reports. This will give an indication to past trends and shed light on possible future trends. With this information annul waste volumes consigned to landfill can be calculated and used to determine whether or not Ireland can achieve the EU Landfill Directive targets. Without significant investment in Irelands waste management infrastructure it is unlikely that the targets will be met. Existing waste treatment facilities need to be managed as efficiently as possible. Waste streams must also be managed so waste is shared appropriately between companies and not create a monopolising waste treatment facility. The driving forces behind an efficient waste management infrastructure are government policy and legislation. An overall and efficient waste management strategy must be in place, along with disincentives for landfilling of waste such as the landfill levy. Encouragement and education of the population is the fundamental and first step to achieving the landfill directive targets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study analyses the area of construction and demolition waste (C & D W) auditing. The production of C&DW has grown year after year since the Environmental Protection Agency (EPA) first published a report in 1996 which provided data for C&D W quantities for 1995 (EPA, 1996a). The most recent report produced by the EPA is based on data for 2005 (EPA, 2006). This report estimated that the quantity of C&DW produced for that period to be 14 931 486 tonnes. However, this is a ‘data update’ report containing an update on certain waste statistics so any total provided would not be a true reflection of the waste produced for that period. This illustrates that a more construction site-specific form of data is required. The Department of Building and Civil Engineering in the Galway-Mayo Institute of Technology have carried out two recent research projects (Grimes, 2005; Kelly, 2006) in this area, which have produced waste production indicators based on site-specific data. This involved the design and testing of an original auditing tool based on visual characterisation and the application of conversion factors. One of the main recommendations of these studies was to compare this visual characterisation approach with a photogrammetric sorting methodology. This study investigates the application of photogrammetric sorting on a residential construction site in the Galway region. A visual characterisation study is also carried out on the same project to compare the two methodologies and assess the practical application in a construction site environment. Data collected from the waste management contractor on site was also used to provide further evaluation. From this, a set of waste production indicators for new residential construction was produced: □ 50.8 kg/m2 for new residential construction using data provided by the visual characterisation method and the Landfill Levy conversion factors. □ 43 kg/m2 for new residential construction using data provided by the photogrammetric sorting method and the Landfill Levy conversion factors. □ 23.8 kg/m2 for new residential construction using data provided by Waste Management Contractor (WMC). The acquisition of the data from the waste management contractor was a key element for testing of the information produced by the visual characterisation and photogrammetric sorting methods. The actual weight provided by the waste management contractor shows a significant difference between the quantities provided.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This Study assessed the development of sludge treatment and reuse policy since the original 1993 National Sludge Strategy Report (Weston-FTA, 1993). A review of the 48 sludge treatment centres, current wastewater treatment systems and current or planned sludge treatment and reuse systems was carried out Sludges from all Regional Sludge Treatment Centres (areas) were characterised through analysis of selected parameters. There have been many changes to the original policy, as a result of boundary reviews, delays in developing sludge management plans, development in technology and changes in tendering policy, most notably a move to design-build-operate (DBO) projects. As a result, there are now 35 designated Hub Centres. Only 5 of the Hub Centres are producing Class A Biosolids. These are Ringsend, Killamey, Carlow, Navan and Osberstown. Ringsend is the only Hub Centre that is fully operational, treating sludge from surrounding regions by Thermal Drying. Killamey is producing Class A Biosolids using Autothermal Thermophilic Aerobic Digestion (ATAD) but is not, as yet, treating imported sludge. The remaining three plants are producing Class A Biosolids using Alkaline Stabilisation. Anaerobic Digestion with post pasteurisation is the most common form of sludge treatment, with 11 Hub Centres proposing to use it. One plant is using ATAD, two intend to use Alkaline Stabilisation, seven have selected Thermal Drying and three have selected Composting. While the remaining plants have not decided which sludge treatment to select, this is because of incomplete Sludge Management Plans and on DBO contracts. Analysis of sludges from the Hub Centres showed that all Irish sewage sludge is safe for agricultural reuse as defined by the Waste Management Regulations {Use of Sewage Sludge in Agriculture) (S.I. 267/2001), providing that a nutrient management plan is taken into consideration and that the soil limits of the 1998 (S.I. 148/1998) Waste Management Regulations are not exceeded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All organisations make some contribution to the degradation of the environment through their use of resources and production of waste. Environmental management systems (EMS) standards can provide a tool for companies to systematically reduce their environmental impacts. ISO 14001 was published in 1996. This fitted in with plans of the case study company to take proactive action in this area, even though there was no legislative requirement for them to do so. As EMS implementation was a new area at the time, appropriate methodologies were developed to address different aspects of the implementation, and ISO 14001 was successfully implemented in the company. The results of the primary research included: ♦ Drawing up a methodology for identifying and interpreting the environmental legislation that may have an impact on the organisation and compiling a register of such regulations. ♦ Developing a robust methodology for assessing significant environmental aspects and impacts and applying this to the software company. ♦ Establishing objectives and targets for those aspects identified as significant and implementing environmental management programmes to meet these. ♦ Developing an internal environmental audit procedure based on auditing against the significant aspects. ♦ Integrating areas of the EMS with the existing quality management system in order to avoid duplication of effort. ♦ Undergoing an external assessment process in order to achieve certification of the system. The thesis concludes that the systematic approach defined in ISO 14001 provided a mechanism that the organisation was able to adopt to bring about improvement in its environmental performance. The system was based on a thorough evaluation of the organisation's significant environmental aspects in order to bring about a reduction in its negative impacts. The ISO 14001 requirement for continual improvement is the key driver of the system, and this is what differentiates it from ISO 9000.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy management is the process of monitoring, controlling and conserving energy in a building or organisation. The main reasons for this are for cost purposes and benefit to the environment. Through various techniques and solutions for lighting, heating, office equipment, the building fabric etc along with a change in people’s attitudes there can be a substantial saving in the amount spent on energy. A good example o f energy waste in GMIT is the lighting situation in the library. All the lights are switched on all day on even in places where that is adequate daylighting, which is a big waste o f energy. Also the lights for book shelves are left on. Surely all these books won’t be searched for all at the one time. It would make much more sense to have local switches that the users can control when they are searching for a particular book. Heating controls for the older parts o f the college are badly needed. A room like 834 needs a TRV to prevent it from overheating as temperatures often reach the high twenties due to the heat from the radiators, computers, solar gains and heat from users o f the room. Also in the old part o f the college it is missing vital insulation, along with not being air tight due to the era when it was built. Pumped bonded bead insulation and sealant around services and gaps can greatly improve the thermal performance o f the building and help achieve a higher BER cert. GMIT should also look at the possibility o f installing a CHP plant to meet the base heating loads. It would meet the requirement o f running 4500 hours a year and would receive some financial support from the Accelerated Capital Allowance. I f people’s attitudes are changed through energy awareness campaigns and a few changes made for more energy efficient equipment, substantial savings can be made in the energy expenditure.