8 resultados para Termo-mecânica. Interconector cerâmico. Interconector metálico. Cromita de lantânio. PaCOS
em Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de C
Resumo:
Para la supervivencia de cualquier industria en un mercado cada vez más competitivo resulta esencial mejorar la calidad del producto y reducir costos. Como parte de esa tendencia, el proceso de diseño, tanto de bienes como de procesos de manufactura, debe ser confiable e insumir el menor tiempo posible para permitir agilidad y eficacia en los cambios y las innovaciones que requiere el mercado. Es necesario abandonar los procesos de desarrollo basados en largas y costosas secuencias de prueba y error y reemplazarlos por procedimientos más cortos y eficientes. Las herramientas informáticas y los modelos computacionales han contribuido en gran medida a lograr dicho objetivo. Estos métodos son cada vez más utilizados en industrias tan importantes como la automotriz o la de maquinaria y equipamiento agrícola, ambas de relevante importancia en la actividad económica de nuestra provincia. En las mencionadas industrias, con la intención de mejorar las prestaciones del producto, de reducir costos de mantenimiento para igual prestación y, sobre todo, con el objetivo de disminuir el peso total del vehículo, factor importante en relación con el ahorro de combustible, es habitual la sustitución de algunos materiales tradicionalmente utilizados por otros con mejor relación prestación/costo y prestación/peso. Dentro de este grupo de nuevos materiales que se emplean en la industria automotriz se encuentran los compuestos, las aleaciones ligeras y la fundición dúctil, los cuales han estado substituyendo al acero o a la fundición gris en algunas piezas. La meta de esta investigación es generar modelos computacionales multiescala de: a) el proceso de tratamiento térmico de austemperizado de la fundición dúctil, b) el comportamiento mecánico de elementos de fundición dúctil y c) el comportamiento mecánico de material compuesto de matriz epoxi y fibra de vidrio con daño higrotérmico. Se usarán simulaciones acopladas de meso y macromecánica. El principal postulado es que la representación de la mesomecánica del material acoplada a la macromecánica conduce a resultados que mejoran las predicciones con respecto a modelos planteados sólo a nivel macroscópico. El dominio macroscópico se representará con elementos finitos y en ese nivel se resolverán problemas térmicos y mecánicos. En la mesoescala se emplearán leyes fenomenológicas para el aspecto metalúrgico del austemperizado y elementos finitos para el análisis del comportamiento micromecánico de la fundición dúctil y del material compuesto. Los productos resultantes de la investigación serán software y metodologías que puedan ser utilizadas en la mejora del diseño de piezas de fundición dúctil y de materiales compuestos y en el ajuste del tratamiento de austemperizado de la fundición dúctil que permita obtener la microestructura requerida. Desde un punto de vista académico y en relación con la temática planteada en el proyecto, tres integrantes llevarán a cabo sus estudios doctorales y se publicarán resultados en revistas internacionales
Resumo:
El proyecto de investigación propuesto tiene como principal objetivo profundizar en el estudio de la Mecánica Estadística y su aplicación a la resolución de problemas en esta área. Los temas de interés son los siguientes: 1. Estudio de la influencia del desorden en las propiedades dinámicas y termodinámicas de sistemas clásicos y cuánticos. 2. Reacciones controladas por difusión; influencia de campos externos aplicados. 3. Estudio de la influencia de la autocorrelación temporal finita sobre un sistema excitado por un ruido (ruido coloreado). 4. Resonancia Estocástica analizada a través de la función de Estructura Dinámica. 5. Estudio de procesos de quimiorrecepción de sistemas biológicos. 6. Cálculo del operador de evolución temporal para sistemas con Hamiltonianos dependientes del tiempo (Fase de Berry). 7. Influencia del desorden en la estadística del tiempo del primer pasaje en sistemas finitos. 8. Estudio del modelo de "Tight Binding" con desorden estático. Objetivos específicos * Se continuará con el estudio de la evolución temporal para sistemas Hamiltonianos dependientes del tiempo (Fase de Berry). * Se estudiará de las propiedades termodinámicas de sistemas Hamiltonianos clásicos y cuánticos con desorden estático. * Se estudiará la probabilidad de supervivencia y los momentos de desplazamientos para partículas que difunden en un sistema unidimensional con trampas estáticas. En particular se tratará el caso de campo fuerte, extendiendo los resultados ya obtenidos en el caso de campo débil; se analizará la conexión con la estadística del tiempo del primer pasaje. * Se continuará con el estudio analítico de los exponentes críticos para Modelos de la Mayoría. (...) * Se realizará un estudio detallado de las propiedades de la función de estructura dinámica asociada con el movimiento uni-dimensional de partículas sometidas a potenciales anarmónicos con múltiples pozos y fricción débil. Se estudiará el fenómeno de resonancia estocástica a través de la función de estructura dinámica. * Se estudiará la estadística del tiempo del primer pasaje en sistemas finitos homogéneos y desordenados con diversas condiciones de entorno.
Resumo:
Objetivos generales y específicos: * "Large Deviations" no-comutativas. (...) * Propiedades (sobre todo extremales) de la entropía relativa. (...) * Estados fundamentales de sistemas (de spins) cuánticos. (...) Pero se espera sobre todo concentrar esfuerzos en los siguientes dos proyectos: 1. Termodinámica de equilibrio para modelos con desorden. Se pretende continuar con los estudios acerca de los aspectos termodinámicos y dinámicos de modelos importantes en el ámbito de los sistemas desordenados. (...) El principal interés concierne a la mecánica estadística de sistemas de spines cuyas constantes de interacción tienen componentes aleatorias. Estos modelos están relacionados con los modelos conocidos como vidrios de spin y el principal objetivo consiste en obtener información acerca de los diagramas de fases. (...) 2. Efectos no-adiabáticos en dinámica molecular. El proyecto tiene como objetivo general el estudio de aspectos conceptuales y computacionales de la dinámica de sistemas que involucran dos tipos de grados de libertad asociados usualmente con masas muy diferentes. Tal es el caso de los sistemas moleculares en los cuales las masas nucleares y electrónicas difieren en tres órdenes de magnitud. La investigación se centrará en situaciones en que falla la hipótesis (usual) de adiabaticidad. (...) Se estudiarán en un principio las bases matemáticas y conceptuales de los algoritmos de cálculo numérico conocido como "surface hopping methods". (...) Se reexaminará la base teórica de los métodos actuales para el estudio de fenómenos no adiabáticos. Se intentará el desarrollo de nuevos algoritmos de cálculo basados en las expansiones asintóticas de Hagedorn.
Resumo:
Los factores que intervienen en la magnitud del colapso relativo de la estructura de un suelo colapsable son los siguientes: a) Factores Estructurales (peso unitario, historia de tensiones) b) Factores Físico-químicos (tipo de vínculos) c) Factores Tensoriales (tensor) d) Factores de forma (relación altura-diámetro). Para medir la magnitud del colapso relativo se realizan ensayos edométricos o ensayos triaxiales con una relación de tensiones determinada, imitando el problema que se quiere analizar. O sea, se lleva el suelo a un estado tensional determinado y luego se provoca el incremento de humedad establecido. En cierta forma, se trata de reproducir en el laboratorio lo que se quiere analizar ante un problema determinado. (...) El objetivo de esta investigación es la elaboración de un suelo colapsable compactado a fin de estudiar con detalle cada uno de los factores que influyen en el fenómeno de colapso. (...) La investigación puede dividirse en dos etapas: una primera referida a la elaboración de un suelo colapsable homogéneo cuyo comportamiento se asemeje al de los suelos colapsables naturales de origen loéssico y una segunda referida al análisis de los distintos factores que intervienen en el fenómeno de colapso: de forma, tensionales, estructurales y físico-químico.
Resumo:
La necesidad de nuevos materiales para ser usados en implantes óseos, con mayor biocompatibilidad y características de oseointegración, hace que la investigación se dirija hacia el uso de diferentes materiales, combinados adecuadamente. Tal es el caso de los implantes de titanio (Ti) recubiertos con hidroxiapatita (HAP). El primero, le brinda al implante sus características mecánicas mientras que la HAP, al ser un cerámico bioactivo, le provee sus excelentes características químicas en la superficie de reacción con el tejido. El problema es que se ha demostrado que hay una incompatibilidad mecánica entre el Ti y la HAP, al poseer propiedades muy distintas. Una solución sería la incorporación de la HAP como parte del implante de titanio, generando un material compuesto o composite de Ti-HAP. La pulvimetalurgia permite, en principio, realizar esta mezcla de materiales, con el agregado beneficioso de porosidad debida al proceso de sinterización involucrado. Este trabajo, como primera parte de un proyecto mayor, se propone utilizar las técnicas pulvimetalúrgicas para obtener un composite poroso de Ti-HAP, para su futura aplicación como material de implante óseo.
Resumo:
El proyecto tiene como objetivo general colaborar en la descontaminación del medio ambiente, y en la solución del déficit habitacional de nuestro país. Su objetivo específico es el desarrollo de componentes constructivos sustentables desde los puntos de vista ecológico, técnico y económico. Los resultados esperados son tejas elaboradas con materiales reciclados tales como plásticos procedentes de la industria, y caucho procedente de neumáticos en desuso. De esta manera se colabora en la descontaminación del medio ambiente, puesto que se utilizan residuos que en gran parte son enterrados en predios municipales, sin utilidad alguna; o acumulados y quemados en basurales, produciendo degradación del entorno. Uno de los propósitos del trabajo es aportar una alternativa a otras tecnologías de construcción tradicionales, que consumen recursos no renovables, o que producen impacto ambiental negativo. Este proyecto permitirá la continuidad de una línea de trabajo iniciada en el Centro Experimental de la Vivienda Económica en años anteriores, cuya temática fue el reciclado de plásticos para elaborar ladrillos, bloques y placas que se utilizan como cerramiento en viviendas económicas. Estos productos fueron desarrollados utilizando como ligante el cemento Pórtland. En este proyecto se propone ligar las partículas plásticas y de caucho mediante un procedimiento de termo-moldeo con compactación, para la obtención de tejas con ventajas técnicas comparativas con respecto a las tradicionales (mayor resistencia al granizo y a esfuerzos de flexión). La metodología a utilizar es la de Investigación – acción, que implica la ejecución inter.-disciplinaria y grupal de experiencias, con evaluaciones cíclicas capaces de ir generando un retorno para retro-alimento de la investigación. Sintéticamente, se realizarán experiencias sucesivas, con la fabricación de probetas en las cuales se modificarán variables de a una por vez (tales como la dosificación de materiales, granulometrías, materiales constitutivos, procedimientos de elaboración, temperatura aplicada, presión mecánica, y diseño morfológico de componentes), se realizarán ensayos de laboratorio, se evaluarán resultados, se realizarán ajustes en base a conclusiones parciales, se construirá un prototipo y se evaluará su comportamiento en el tiempo, para finalmente tramitar los Certificados de Aptitud Técnica y la Patente. La hipótesis de trabajo es que se pueden construir viviendas más ecológicas que las tradicionales, con calidad técnica y económicas, utilizando elementos constructivos fabricados con “nuevos materiales”, a partir del reciclado de residuos plásticos y de caucho.
Resumo:
El presente trabajo contempla el estudio del comportamiento termomecánico de un motor monopropelente, cuyo funcionamiento se basa en la descomposición catalítica del combustible, produciendo la gasificación del mismo, con su consecuente generación de calor. Estos gases, al ser conducidos convenientemente a través de una tobera con el fin de generar su apropiada expansión, producirán la acción deseada. Un diseño erróneo del sistema de alimentación podría producir el acortamiento de la vida útil del catalizador, la degradación de los sellos de la válvula, vaporizaciones indeseadas del propelente, etc.El objetivo que se persigue es construir un modelo computacional que permita visualizar el comportamiento conjunto de los diversos fenómenos, la influencia de los diversos componentes y su interacción, a fin de identificar los elementos críticos, y poder así tomar acciones correctivas u operar sobre aspectos de diseño del sistema para un mejor acondicionamiento del combustible. Para la aplicación del método, se modelizarán cada uno de los fenómenos que gobiernan el comportamiento del sistema y se les codificará en lenguaje de programación, prestando especial atención al comportamiento del fluido tanto en régimen estable como durante los transitorios. Una vez validado el programa se correrán simulaciones para determinar la influencia de los parámetros básicos de diseño sobre los procesos termomecánicos mediante un análisis de sensitividad, a fin de mitigar los posibles efectos adversos. Sin embargo, durante la ejecución de proyectos de ingeniería de este tipo, una de las cuestiones de mayor importancia es el uso racional de materiales. Una adecuada utilización de los mismos tiene diversas ventajas, dentro de las cuales podemos citar como a las de mayor relevancia a: (i) mejor aprovechamiento de las capacidades de los materiales, (ii) elementos estructurales de menor tamaño, lo que genera una economía de espacio, (iii) menor costo económico y financiero del proyecto y (iv) menor impacto ambiental. En este sentido, una de las maneras más difundidas para el uso racional de materiales es, utilizar materiales con propiedades constitutivas que se adapten mejor a las características del proyecto en desarrollo. Sin embargo, cuando se está frente a la imposibilidad de cambiar de material o mejorar las propiedades existentes, es importante comenzar a utilizar otras metodologías que permitan un mejor aprovechamiento del mismo. Aquí surge naturalmente la necesidad de introducir cambios en la forma de los componentes estructurales que integran el proyecto ejecutivo. Para realizar una adecuada optimización de los componentes estructurales, es necesario previamente definir cual o cuales van a ser las características a optimizar y como van a ser medidas esas características durante el proceso de análisis. Por lo tanto, se propone aplicar el análisis de sensibilidad topológica para problemas termo-mecánicos para optimizar los componentes estructurales del motor.