3 resultados para single board multisensor unit
em Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina
Resumo:
El presente proyecto de investigación solicitado es continuacion de una línea de trabajo con insumos de desecho agroindustrial regional en la provincia de Cordoba. Prevé aportes que contribuyan a la sustentabilidad económica y social, y ambiental. Se trata de aportar valor agregado a importantes cantidades residuales de cascaras de mani. Además promueve la produccion de materiales y componentes de construcción de viviendas saludables y accesibles para sectores con necesidades sociohabitacionales.El deshecho de cáscara de maní constituye hoy en la provincia de Córdoba, un recurso sobre abundante no aprovechado en la escala en que se dispone. Existen desarrollos para su aprovechamiento - camadas de aves, alimento de ganado, carbon activado- , que no alcanzan a consumir las enormes cantidades de cascaras que se disponen hoy: alrededor de 250 000 Tn/ año. (La produccion anual de mani en caja en la provincia de Cordoba es estimada en 700.000 Tn/año)A partir de los resultados ya obtenidos con paneles livianos termoaislantes, utilizados en cielorrasos y tabiques divisorios, el nuevo trabajo de investigación y desarrollo se propone avanzar sobre las condiciones de produccion de tableros compactos, similares a los producidos comercialmente con residuos de la industria de la madera. Se estudiaran y experimentaran las propiedades de uso de resinas poliester, ureaformaldehido y fenolformaldehido, bajo condiciones de alta presion y temperatura. En la primera etapa (1º año) buscamos obtener nuevos materiales en escala de probetas.En una etapa siguiente (2º año), los nuevos materiales obtenidos serán aplicados al diseño de componentes de vivienda. Se estudiarán las posibilidades alternativas de empleo en relación a los parámetros de evaluación : peso, resistencia mecánica, aislación térmica, resistencia a la humedad, y al envejecimiento acelerado.En la última etapa (3º año) los resultados obtenidos serán aplicados en modelos de escala real y/o prototipos demostrativos para evaluar su puesta en servicio.
Resumo:
Los eventos transitorios únicos analógicos (ASET, Analog Single Event Transient) se producen debido a la interacción de un ión pesado o un protón de alta energía con un dispositivo sensible de un circuito analógico. La interacción del ión con un transistor bipolar o de efecto de campo MOS induce pares electrón-hueco que provocan picos que pueden propagarse a la salida del componente analógico provocando transitorios que pueden inducir fallas en el nivel sistema. Los problemas más graves debido a este tipo de fenómeno se dan en el medioambiente espacial, muy rico en iones pesados. Casos típicos los constituyen las computadoras de a bordo de satélites y otros artefactos espaciales. Sin embargo, y debido a la continua contracción de dimensiones de los transistores (que trae aparejado un aumento de sensibilidad), este fenómeno ha comenzado a observarse a nivel del mar, provocado fundamentalmente por el impacto de neutrones atmosféricos. Estos efectos pueden provocar severos problemas a los sistemas informáticos con interfaces analógicas desde las que obtienen datos para el procesamiento y se han convertido en uno de los problemas más graves a los que tienen que hacer frente los diseñadores de sistemas de alta escala de integración. Casos típicos son los Sistemas en Chip que incluyen módulos de procesamiento de altas prestaciones como las interfaces analógicas.El proyecto persigue como objetivo general estudiar la susceptibilidad de sistemas informáticos a ASETs en sus secciones analógicas, proponiendo estrategias para la mitigación de los errores.Como objetivos específicos se pretende: -Proponer nuevos modelos de ASETs basados en simulaciones en el nivel dispositivo y resueltas por el método de elementos finitos.-Utilizar los modelos para identificar las secciones más propensas a producir errores y consecuentemente para ser candidatos a la aplicación de técnicas de endurecimiento a radiaciones.-Utilizar estos modelos para estudiar la naturaleza de los errores producidos en sistemas de procesamiento de datos.-Proponer soluciones novedosas para la mitigación de estos efectos en los mismos circuitos analógicos evitando su propagación a las secciones digitales.-Proponer soluciones para la mitigación de los efectos en el nivel sistema.Para llevar a cabo el proyecto se plantea un procedimiento ascendente para las investigaciones a realizar, comenzando por descripciones en el nivel físico para posteriormente aumentar el nivel de abstracción en el que se encuentra modelado el circuito. Se propone el modelado físico de los dispositivos MOS y su resolución mediante el Método de Elementos Finitos. La inyección de cargas en las zonas sensibles de los modelos permitirá determinar los perfiles de los pulsos de corriente que deben inyectarse en el nivel circuito para emular estos efectos. Estos procedimientos se realizarán para los distintos bloques constructivos de las interfaces analógicas, proponiendo estrategias de mitigación de errores en diferentes niveles.Los resultados esperados del presente proyecto incluyen hardware para detección de errores y tolerancia a este tipo de eventos que permitan aumentar la confiabilidad de sistemas de tratamiento de la información, así como también nuevos datos referentes a efectos de la radiación en semiconductores, nuevos modelos de fallas transitorias que permitan una simulación de estos eventos en el nivel circuito y la determinación de zonas sensibles de interfaces analógicas típicas que deben ser endurecidas para radiación.
Resumo:
El avance en la potencia de cómputo en nuestros días viene dado por la paralelización del procesamiento, dadas las características que disponen las nuevas arquitecturas de hardware. Utilizar convenientemente este hardware impacta en la aceleración de los algoritmos en ejecución (programas). Sin embargo, convertir de forma adecuada el algoritmo en su forma paralela es complejo, y a su vez, esta forma, es específica para cada tipo de hardware paralelo. En la actualidad los procesadores de uso general más comunes son los multicore, procesadores paralelos, también denominados Symmetric Multi-Processors (SMP). Hoy en día es difícil hallar un procesador para computadoras de escritorio que no tengan algún tipo de paralelismo del caracterizado por los SMP, siendo la tendencia de desarrollo, que cada día nos encontremos con procesadores con mayor numero de cores disponibles. Por otro lado, los dispositivos de procesamiento de video (Graphics Processor Units - GPU), a su vez, han ido desarrollando su potencia de cómputo por medio de disponer de múltiples unidades de procesamiento dentro de su composición electrónica, a tal punto que en la actualidad no es difícil encontrar placas de GPU con capacidad de 200 a 400 hilos de procesamiento paralelo. Estos procesadores son muy veloces y específicos para la tarea que fueron desarrollados, principalmente el procesamiento de video. Sin embargo, como este tipo de procesadores tiene muchos puntos en común con el procesamiento científico, estos dispositivos han ido reorientándose con el nombre de General Processing Graphics Processor Unit (GPGPU). A diferencia de los procesadores SMP señalados anteriormente, las GPGPU no son de propósito general y tienen sus complicaciones para uso general debido al límite en la cantidad de memoria que cada placa puede disponer y al tipo de procesamiento paralelo que debe realizar para poder ser productiva su utilización. Los dispositivos de lógica programable, FPGA, son dispositivos capaces de realizar grandes cantidades de operaciones en paralelo, por lo que pueden ser usados para la implementación de algoritmos específicos, aprovechando el paralelismo que estas ofrecen. Su inconveniente viene derivado de la complejidad para la programación y el testing del algoritmo instanciado en el dispositivo. Ante esta diversidad de procesadores paralelos, el objetivo de nuestro trabajo está enfocado en analizar las características especificas que cada uno de estos tienen, y su impacto en la estructura de los algoritmos para que su utilización pueda obtener rendimientos de procesamiento acordes al número de recursos utilizados y combinarlos de forma tal que su complementación sea benéfica. Específicamente, partiendo desde las características del hardware, determinar las propiedades que el algoritmo paralelo debe tener para poder ser acelerado. Las características de los algoritmos paralelos determinará a su vez cuál de estos nuevos tipos de hardware son los mas adecuados para su instanciación. En particular serán tenidos en cuenta el nivel de dependencia de datos, la necesidad de realizar sincronizaciones durante el procesamiento paralelo, el tamaño de datos a procesar y la complejidad de la programación paralela en cada tipo de hardware. Today´s advances in high-performance computing are driven by parallel processing capabilities of available hardware architectures. These architectures enable the acceleration of algorithms when thes ealgorithms are properly parallelized and exploit the specific processing power of the underneath architecture. Most current processors are targeted for general pruposes and integrate several processor cores on a single chip, resulting in what is known as a Symmetric Multiprocessing (SMP) unit. Nowadays even desktop computers make use of multicore processors. Meanwhile, the industry trend is to increase the number of integrated rocessor cores as technology matures. On the other hand, Graphics Processor Units (GPU), originally designed to handle only video processing, have emerged as interesting alternatives to implement algorithm acceleration. Current available GPUs are able to implement from 200 to 400 threads for parallel processing. Scientific computing can be implemented in these hardware thanks to the programability of new GPUs that have been denoted as General Processing Graphics Processor Units (GPGPU).However, GPGPU offer little memory with respect to that available for general-prupose processors; thus, the implementation of algorithms need to be addressed carefully. Finally, Field Programmable Gate Arrays (FPGA) are programmable devices which can implement hardware logic with low latency, high parallelism and deep pipelines. Thes devices can be used to implement specific algorithms that need to run at very high speeds. However, their programmability is harder that software approaches and debugging is typically time-consuming. In this context where several alternatives for speeding up algorithms are available, our work aims at determining the main features of thes architectures and developing the required know-how to accelerate algorithm execution on them. We look at identifying those algorithms that may fit better on a given architecture as well as compleme