5 resultados para multilevel statistical modeling
em Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina
Resumo:
A partir de las últimas décadas se ha impulsado el desarrollo y la utilización de los Sistemas de Información Geográficos (SIG) y los Sistemas de Posicionamiento Satelital (GPS) orientados a mejorar la eficiencia productiva de distintos sistemas de cultivos extensivos en términos agronómicos, económicos y ambientales. Estas nuevas tecnologías permiten medir variabilidad espacial de propiedades del sitio como conductividad eléctrica aparente y otros atributos del terreno así como el efecto de las mismas sobre la distribución espacial de los rendimientos. Luego, es posible aplicar el manejo sitio-específico en los lotes para mejorar la eficiencia en el uso de los insumos agroquímicos, la protección del medio ambiente y la sustentabilidad de la vida rural. En la actualidad, existe una oferta amplia de recursos tecnológicos propios de la agricultura de precisión para capturar variación espacial a través de los sitios dentro del terreno. El óptimo uso del gran volumen de datos derivado de maquinarias de agricultura de precisión depende fuertemente de las capacidades para explorar la información relativa a las complejas interacciones que subyacen los resultados productivos. La covariación espacial de las propiedades del sitio y el rendimiento de los cultivos ha sido estudiada a través de modelos geoestadísticos clásicos que se basan en la teoría de variables regionalizadas. Nuevos desarrollos de modelos estadísticos contemporáneos, entre los que se destacan los modelos lineales mixtos, constituyen herramientas prometedoras para el tratamiento de datos correlacionados espacialmente. Más aún, debido a la naturaleza multivariada de las múltiples variables registradas en cada sitio, las técnicas de análisis multivariado podrían aportar valiosa información para la visualización y explotación de datos georreferenciados. La comprensión de las bases agronómicas de las complejas interacciones que se producen a la escala de lotes en producción, es hoy posible con el uso de éstas nuevas tecnologías. Los objetivos del presente proyecto son: (l) desarrollar estrategias metodológicas basadas en la complementación de técnicas de análisis multivariados y geoestadísticas, para la clasificación de sitios intralotes y el estudio de interdependencias entre variables de sitio y rendimiento; (ll) proponer modelos mixtos alternativos, basados en funciones de correlación espacial de los términos de error que permitan explorar patrones de correlación espacial de los rendimientos intralotes y las propiedades del suelo en los sitios delimitados. From the last decades the use and development of Geographical Information Systems (GIS) and Satellite Positioning Systems (GPS) is highly promoted in cropping systems. Such technologies allow measuring spatial variability of site properties including electrical conductivity and others soil features as well as their impact on the spatial variability of yields. Therefore, site-specific management could be applied to improve the efficiency in the use of agrochemicals, the environmental protection, and the sustainability of the rural life. Currently, there is a wide offer of technological resources to capture spatial variation across sites within field. However, the optimum use of data coming from the precision agriculture machineries strongly depends on the capabilities to explore the information about the complex interactions underlying the productive outputs. The covariation between spatial soil properties and yields from georeferenced data has been treated in a graphical manner or with standard geostatistical approaches. New statistical modeling capabilities from the Mixed Linear Model framework are promising to deal with correlated data such those produced by the precision agriculture. Moreover, rescuing the multivariate nature of the multiple data collected at each site, several multivariate statistical approaches could be crucial tools for data analysis with georeferenced data. Understanding the basis of complex interactions at the scale of production field is now within reach the use of these new techniques. Our main objectives are: (1) to develop new statistical strategies, based on the complementarities of geostatistics and multivariate methods, useful to classify sites within field grown with grain crops and analyze the interrelationships of several soil and yield variables, (2) to propose mixed linear models to predict yield according spatial soil variability and to build contour maps to promote a more sustainable agriculture.
Resumo:
Nuevas biotecnologías, como los marcadores de la molécula de ADN, permiten caracterizar el genoma vegetal. El uso de la información genómica producida para cientos o miles de posiciones cromosómicas permite identificar genotipos superiores en menos tiempo que el requerido por la selección fenotípica tradicional. La mayoría de los caracteres de las especies vegetales cultivadas de importancia agronómica y económica, son controlados por poli-genes causantes de un fenotipo con variación continua, altamente afectados por el ambiente. Su herencia es compleja ya que resulta de la interacción entre genes, del mismo o distinto cromosoma, y de la interacción del genotipo con el ambiente, dificultando la selección. Estas biotecnologías producen bases de datos con gran cantidad de información y estructuras complejas de correlación que requieren de métodos y modelos biométricos específicos para su procesamiento. Los modelos estadísticos focalizados en explicar el fenotipo a partir de información genómica masiva requieren la estimación de un gran número de parámetros. No existen métodos, dentro de la estadística paramétrica capaces de abordar este problema eficientemente. Además los modelos deben contemplar no-aditividades (interacciones) entre efectos génicos y de éstos con el ambiente que son también dificiles de manejar desde la concepción paramétrica. Se hipotetiza que el análisis de la asociación entre caracteres fenotípicos y genotipos moleculares, caracterizados por abundante información genómica, podría realizarse eficientemente en el contexto de los modelos mixtos semiparamétricos y/o de métodos no-paramétricos basados en técnicas de aprendizaje automático. El objetivo de este proyecto es desarrollar nuevos métodos para análisis de datos que permitan el uso eficiente de información genómica masiva en evaluaciones genéticas de interés agro-biotecnológico. Los objetivos específicos incluyen la comparación, respecto a propiedades estadísticas y computacionales, de estrategias analíticas paramétricas con estrategias semiparamétricas y no-paramétricas. Se trabajará con aproximaciones por regresión del análisis de loci de caracteres cuantitativos bajo distintas estrategias y escenarios (reales y simulados) con distinto volúmenes de datos de marcadores moleculares. En el área paramétrica se pondrá especial énfasis en modelos mixtos, mientras que en el área no paramétrica se evaluarán algoritmos de redes neuronales, máquinas de soporte vectorial, filtros multivariados, suavizados del tipo LOESS y métodos basados en núcleos de reciente aparición. La propuesta semiparamétrica se basará en una estrategia de análisis en dos etapas orientadas a: 1) reducir la dimensionalidad de los datos genómicos y 2) modelar el fenotipo introduciendo sólo las señales moleculares más significativas. Con este trabajo se espera poner a disposición de investigadores de nuestro medio, nuevas herramientas y procedimientos de análisis que permitan maximizar la eficiencia en el uso de los recursos asignados a la masiva captura de datos genómicos y su aplicación en desarrollos agro-biotecnológicos.
Resumo:
El objetivo de este proyecto, enmarcado en el área de metodología de análisis en bioingeniería-biotecnología aplicadas al estudio del cancer, es el análisis y caracterización a través modelos estadísticos con efectos mixtos y técnicas de aprendizaje automático, de perfiles de expresión de proteínas y genes de las vías metabolicas asociadas a progresión tumoral. Dicho estudio se llevará a cabo mediante la utilización de tecnologías de alto rendimiento. Las mismas permiten evaluar miles de genes/proteínas en forma simultánea, generando así una gran cantidad de datos de expresión. Se hipotetiza que para un análisis e interpretación de la información subyacente, caracterizada por su abundancia y complejidad, podría realizarse mediante técnicas estadístico-computacionales eficientes en el contexto de modelos mixtos y técnias de aprendizaje automático. Para que el análisis sea efectivo es necesario contemplar los efectos ocasionados por los diferentes factores experimentales ajenos al fenómeno biológico bajo estudio. Estos efectos pueden enmascarar la información subycente y así perder informacion relavante en el contexto de progresión tumoral. La identificación de estos efectos permitirá obtener, eficientemente, los perfiles de expresión molecular que podrían permitir el desarrollo de métodos de diagnóstico basados en ellos. Con este trabajo se espera poner a disposición de investigadores de nuestro medio, herramientas y procedimientos de análisis que maximicen la eficiencia en el uso de los recursos asignados a la masiva captura de datos genómicos/proteómicos que permitan extraer información biológica relevante pertinente al análisis, clasificación o predicción de cáncer, el diseño de tratamientos y terapias específicos y el mejoramiento de los métodos de detección como así tambien aportar al entendimieto de la progresión tumoral mediante análisis computacional intensivo.
Resumo:
En la investigación anterior -en la zona pampeana de la Provincia de Córdoba- se demostró teórica y empíricamente, que el desarrollo de la Sociedad Civil muchas veces libradas a su suerte y con limitaciones legales apoyan decididamente el desarrollo local, sin embargo han logrado solo parcialmente sus objetivos, por lo que es necesario comenzar un camino de fortalecimiento en los nuevos roles que deben asumir. Los gobiernos locales, a la vez, intentan trabajosamente con contados éxitos detener el procesos de descapitalización social -financiera y humana- de sus comunidades locales y regionales, peregrinando con escaso éxito a los centros concentrados del poder político y económico, para procurar los recursos financieros y humanos necesarios que no alcanzan a reponer los que se fugan desde hace décadas de sus localidades. Las empresas, con ciclos recurrentes de crecimiento y decrecimiento vinculados a los mercados en que colocan sus productos, también se debaten en la búsqueda de los escasos recursos, financieros y humanos, que les permitan consolidar un desarrollo a mediano y largo plazo. El desarrollo alcanzado en Sistemas de información, instrumentos de relevamiento, análisis y elaboración de propuestas para el Desarrollo Local, nos permite avanzar en: 1. La confirmación empírica de las hipótesis iniciales - factores exógenos y endógenos - en la zona Norte y Serrana de la provincia 2. La validación científica -mediante el Análisis de ecuaciones estructurales. de tales supuestos, para el conjunto de las poblaciones analizadas en ambas etapas. 3. La identificación de los problemas normativos que afectan el desarrollo de las Organizaciones de la Sociedad Civil (OSC). METODOLOGÍA Respecto la validación empírica en la zona norte y serrana 1. Selección de las 4 localidades a relevar de acuerdo a las categorías definidas 2. Elaboración de acuerdos con autoridades e instituciones locales. 3. Relevamiento cualitativo con líderes locales y fuentes de datos secundarias. 4. Adaptación de instrumentos de relevamiento a las realidades locales y estudios previos 5. Relevamiento cuantitativo de campo, capacitación de encuestadores y supervisores. 6. Procesamiento y elaboración de informes finales locales. Respecto de la construcción de modelos de desarrollo 1. Desarrollar las dimensiones especificas y las variables (items) de cada factor crítico. 2. Revisar el instrumento con expertos de cada una de las dimensiones. 3. Validar a nivel exploratorio por medio de un Análisis de Componentes Principales 4. Someter a los expertos la evaluación de una serie de localidades que representan cada uno. Respecto de la identificación de las normas legales que afectan a la Sociedad Civil 1.Relevamiento documental de normas 2. Relevamiento con líderes de instituciones de la Sociedad Civil 3. Análisis de las normas vigentes 4. Elaboración de Informes Finales y Transferencia a líderes e instituciones
Resumo:
El objetivo general de este proyecto es desarrollar nuevos modelos multi-dominio de máquinas eléctricas para aplicaciones al control y al diagnóstico de fallas. Se propone comenzar con el modelo electromagnético del motor de inducción en base a circuitos magnéticos equivalentes (MEC) validándolo por medio de simulación y de resultados experimentales. Como segundo paso se pretende desarrollas modelos térmicos y mecánicos con el objetivo que puedan ser acoplados al modelo electromagnético y de esta estudiar la interacción de los dominios y se validará mediante resultados de simulación y experimentales el modelo completo. Finalmente se pretende utilizar el modelo multi-dominio como una herramienta para la prueba de nuevas estrategias de control y diagnóstico de fallas. The main objective of this project is the development of new multi-domain models of electric machines for control and fault diagnosis applications. The electromagnetic modeling of the induction motor (IM) will be done using the magnetic equivalent circuits approach. This model will be validated by simulation and by experimental results. As a second step of this project, new mechanical and thermal models for the IM will be developed, with the objective of coupling these models with the electromagnetic one. With this multi-domain model it will be possible to study the interaction between each others. After that, the complete model will be validated by simulation and experimental results. Finally, the model will be used as a tool for testing new control and fault diagnosis strategies.