3 resultados para Vitro Development
em Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina
Resumo:
El plan propone desarrollar nuevas agentes fotosensibilizadores derivados de macrociclos pirrólicos con aplicaciones en la inactivación fotodinámica (PDI) de microorganismos. La propuesta abarca el desarrollo de procedimientos apropiados para la síntesis de compuestos derivados de porfirinas, subftalocianinas y ftalocianinas sustituidas en la periferia por grupos que permitan aumentar la actividad biológica. Con la finalidad de incrementar la incorporación intracelular y la actividad fotodinámica se evaluarán sensibilizadores con distinta distribución y número de cargas, en los cuales se ha incrementado el carácter anfifílico por la presencia de grupos lipofílicos y catiónicos. La combinación de un fotosensibilizador con un compuesto antifúngico está diseñada para aumentar la eficiencia en la inactivación de hongos. También serán evaluadas superficies antimicrobianas recubiertas con una película de fotosensibilizadores. En primera instancia, la actividad fotodinámica de los nuevos agentes fototerapéuticos serán evaluados en sistemas biomiméticos conteniendo sustratos biológicamente activos. Los estudios in vitro serán realizados en cultivos de bacterias y levaduras. Esta aplicación presenta considerable importancia en la inactivación de microorganismos patógenos que crecen in vivo en un foco localizado de infección, en la desinfección de fluidos biológicos y aguas contaminadas con microbios resistentes.
Resumo:
En la patogénesis del cáncer, factores microambientales como la inflamación están estrechamente vinculados al desarrollo y crecimiento tumoral, sustentando la clásica hipótesis de Virchow del origen del cáncer en sitios de inflamación crónica, la cual incitaría a carcinogénesis por múltiples factores. Estudios previos en este laboratorio evidenciaron en un modelo de prostatitis bacteriana agudo con E. coli, profundos cambios estromales semejantes al "estroma reactivo", con predominio de miofibroblasto, que se genera en el cáncer. En correlación, existe abundante evidencia obtenida en modelos experimentales animales confirmando que el microambiente estromal en el cual se desarrollan los tumores epiteliales influencia profundamente la progresión tumoral. El rol protagónico del estroma del huésped en el crecimiento neoplásico, también se ha demostrado inoculando la misma línea tumoral en diferentes tejidos y analizando su comportamiento en comparación con su implantación en el sitio anatómico original del tumor (implante ortotópico); otro factor clave en la repuesta del huésped al tumor está dado por el infiltrado de células inmunes que puede favorecer o limitar el crecimiento tumoral de acuerdo al perfil de citoquinas que secreten. Teniendo en cuenta estos antecedentes, este proyecto tiene como Objetivo General estudiar la influencia de la infección bacteriana crónica en la inducción y evolución del cáncer prostático. Para ello trabajaremos in vivo con dos formas de formas de Tumores Prostáticos, un Tumor Inducido por combinación del carcinógeno N-methyl-N-nitrosourea (MNU) y testosterona; el segundo mediante Transplante Ortotópico de células tumorales prostáticas MAT-LU. En ambos modelos se inducirá previamente una prostatitis bacteriana, a fin de estudiar los efectos de la prostatitis en la inducción del tumor en el primer modelo, y en la implantación de las células tumorales en el segundo. También se inducirá prostatitis después de establecido el tumor por ambos procedimientos, a fin de determinar si la prostatitis bacteriana modula la progresión neoplásica. Finalmente, proponemos un modelo in vitro que permita estudiar la interacción tumor/estroma separado de la influencia del sistema inmune. A tal fin se utilizarán co-cultivos combinando células tumorales con estromales modificadas de diferente modo. La Inducción de Tumores Prostáticos se realizará en ratas de la cepa Wistar adultas, en las cuales se inducirán lesiones displásicas y neoplásicas siguiendo protocolos de carcinogénesis prostática por MNU, para lo cual es necesario el tratamiento previo con acetato de ciprosterona y propionato de testosterona, seguido por administración crónica de testosterona. Los estudios con Transplante Ortotópico de células tumorales se realizarán en ratas Copenhagen. La influencia de la infección bacteriana en el desarrollo tumoral será investigada inyectando E. coli intraprostáticamente: Se realizará Análisis Macroscópico, de Parámetros Morfológicos de las lesiones tumorales, grado de malignidad, extensión e invasión de las lesiones de acuerdo a consensos internacionales, y Bioquímicos mediante análisis de la expresión, por IHQ y WB, de fosfatasa ácida, citoqueratina 8, Prostatic Binding Protein, PTEN (gen supresor tumoral) y el receptor de Andrógenos, todos parámetros de actividad y de transformación celular. También se evaluará apoptosis por TUNEL y proliferación celular. Los cambios del compartimiento estromal en respuesta al implante tumoral y la influencia de la inflamación bacteriana se evaluarán mediante análisis morfológico e inmunocitoquímico, caracterizando el fenotipo de las poblaciones celulares con a-actina, vimentina, calponina y tenascina. Se espera que los resultados aporten evidencias acerca de las interacciones bidireccionales entre células neoplásicas prostáticas y su entorno estromal, que en un futuro puedan servir como base para establecr estrategias para prevenir y/o modificar el crecimiento neoplásico.
Resumo:
La ingeniería genética y la reprogramación de organismos vivos representan las nuevas fronteras biotecnológicas que permitirán generar animales con modificaciones precisas en sus genomas para un sinnúmero de aplicaciones biomédicas y agropecuarias. Las técnicas para inducir modificaciones génicas intencionales en animales, especialmente en especies mayores de interés agropecuario, se encuentran rezagadas si se compara con los avances significativos que se han producido en el área de la transgénesis de roedores de laboratorio, especialmente el ratón. Es así que, el presente proyecto persigue desarrollar y optimizar protocolos para generar embriones bovinos transgénicos para aplicaciones biotecnológicas. La estrategia propuesta, se basa en conseguir la presencia simultánea en el interior celular de una enzima de restricción (I-SceI) más un transgén (formado por casetes de expresión de una proteína fluorescente -ZsGreen1- y neomicina fosfotransferasa). Específicamente, proyectamos estudiar una vía alternativa para generar embriones bovinos transgénicos mediante la incorporación del transgén (casetes ZsGreen1 y neo) flanqueado por sitios I-SceI más la enzima I-SceI al interior del ovocito junto con el espermatozoide durante la técnica conocida como inyección intracitoplasmática de espermatozoides (ICSI). Los embriones así generados se cultivarán in vitro, inspeccionándolos diariamente para detectar la emisión de fluorescencia, indicativa de la expresión de la proteína ZsGreen1. Los embriones que alcancen el estado de blastocisto y expresen el transgén se transferirán quirúrgicamente al útero de ovejas sincronizadas y se mantendrán durante 7 días. Al cabo de este período, los embriones se recolectarán quirúrgicamente del útero ovino y se transportarán al laboratorio para determinar el número de sitios de integración y número de copias del transgén mediante el análisis de su ADN por Southern blot. Se prevé que los resultados de esta investigación permitirán sentar las bases para el desarrollo de métodos eficientes para obtener modificaciones precisas en el genoma de los animales domésticos para futuras aplicaciones biotecnológicas. Genetic engineering and reprogrammed organisms represent the new biotechnological frontiers which will make possible to generate animals with precise genetic modifications for agricultural and biomedical applications. Current methods used to generate genetically modified large animals, lay behind those used in laboratory animals, specially the mouse. Therefore, we seek to develop and optimize protocols to produce transgenic bovine embryos through the use of a non-viral vector. The strategy involves the simultaneous presence inside the cell of a restriction enzyme (I-SceI) and a transgene (carrying cassettes for a fluorescent protein -ZsGreen1- and neomycin phosphotransferase) flanked by restriction sites for the endonuclease. We plan to develop an alternative approach to generate transgenic bovine embryos by coinjecting the transgene flanked by I-SceI restriction sites plus the enzyme I-SceI along with the spermatozoon during the technique known as intracytoplasmic sperm injection (ICSI). Embryos will be cultured in vitro and inspected daily with a fluorescence microscope to characterize transgene expression. Embryos that reach the blastocyst stage and express the transgene will be surgically transfer to the uterus of a synchronized ewe. After 7 days, the embryos will be flushed out the ovine uterus and transported to the laboratory to determine the number of integration sites and transgene copies by Southern blot. We anticipate that results from this research will set the stage for the development of efficient strategies to achieve precise genetic modifications in large domestic animals for future biotechnological applications.