4 resultados para UV-VIS spectrophotometry

em Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina


Relevância:

80.00% 80.00%

Publicador:

Resumo:

El hidrógeno tiene, actualmente, una atención considerable por su posible uso como combustible limpio y otros usos industriales y se ha demostrado que es posible hacer funcionar motores de combustión interna, por lo tanto es una alternativa viable respecto de fuentes de energía no renovables como el petróleo y tal vez sea en el futuro la tecnología más prometedora para reducir la contaminación, conservando el suministro de combustibles fósiles. Uno de los principales problemas para la utilización del hidrógeno como combustible es el del almacenamiento para que pueda ser seguro y transportable con todos los riesgos que esto supone. En este sentido el estudio de la adsorción de polímeros conductores (tal como polianilina, PANI o polipirrol PPy) y su posterior polimerización sobre hospedajes como aluminosilicatos meso y microporosos y carbones mesoporosos, es de suma importancia por sus propiedades para el almacenamiento de H2. El objetivo general de este proyecto es Investigar el almacenamiento de hidrógeno en nuevos composites nano/microestructurados. La síntesis de materiales micro/mesoporosos (MFI, MEL, BEA, L, MS41, SBA-15, SBA-1, SBA-3, SBA-16, CMK-3) para usos como hospedaje se realizan por sol-gel o síntesis hidrotérmica y se modificarán con TiO2, CeO2, ZrO2 y eventualmente con Ir, Ni, Zr. Muestras de estos hospedajes serán expuestos a vapores del monómero puro (anilina o pirrol). Luego se polimerizarán por polimerización oxidativa. Los nanocomposites sintetizados se caracterizarán por XRD, FTIR, DSC, TGA, SEM, TEM, EXFAS, XANES, UV-Vis. La adsorción de hidrógeno sobre los composites se llevará a cabo en un Reactor Parr, desde presiones atmosféricas y a altas presiones y varias temperaturas de adsorción . Los estudios de desorción de hidrogeno se llevarán a cabo en un equipo Chemisorb Micrometrics y se realizarán estudios termogravimétricos y de capacidad de retención de Hidrogeno por el nanocomposite. La importancia del estudio de este proceso tiene importantes implicancias económicas y sociales que serán preponderantes en el futuro debido a las cada vez más exigentes regulaciones ambientales. Además se contribuirá al avance del conocimiento científico, ya que es posible diseñar nuevos materiales, los que además permitirán generar reservorios de H2 con alta eficiencia. Por lo consiguiente: - Se desarrollarán nuevos materiales nanoestructurados, micro y mesoporosos y nanoclusters de especies activas en los hospedajes como así también la inclusión de polímeros (PANI, PPy) dentro de los canales de estos materiales. - Se caracterizarán estos materiales por métodos espectroscópicos (fisicoquímica de superficie). - Se estudiará la adsorción /absorcion de H2 en los nuevos materiales desarrollados. -Se aplicarán métodos de diseño de experimento (RDS), para optimizar el proceso de almacenamiento de H2, nivel de interacción de variables sinérgicas o colinérgicas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La exposición a la luz, al aire, a elevadas temperaturas y el almacenamiento prolongado produce alteraciones nutricionales y organolépticas en alimentos. Las modificaciones nutricionales pueden ser causadas por especies reactivas de oxígeno (ROS), las cuales producen oxidación de proteínas, lípidos, vitaminas, etc. Mientras que las alteraciones organolépticas involucran pérdidas del flavor por la generación de compuesto volátil off-flavor, debido principalmente al desarrollo de microorganismos y a oxidaciones. Compuestos bioactivos (CB) tales como carotenoides (Car) y flavonoides (Fl) cumplen relevantes funciones biológicas, entre las que se pueden destacar la capacidad antioxidante, antimicrobiana y antitumoral, entre otras. El propósito de este proyecto es el estudio de propiedades biológicas en particular capacidad antioxidante y antimicrobiana de CB como Car y Fl microencapsulados en biopolímeros para determinar el efecto de los mismos sobre las alteraciones nutricionales y organolépticas en alimentos durante el almacenamiento. Los CB serán microencapsulados por secado por aspersión spray drying, atrapamiento en liposomas o múltiple emulsificación evaporación de solvente, utilizando goma arábica, lecitina o quitosano como materiales de pared. Se estudiará la capacidad de los compuestos bioactivos y de los materiales de pared para desactivar ROS por espectroscopia de absorción UV-Vis. Se determinará la actividad antimicrobiana de los mismos frente a microorganismos especialmente psicrotrofos, por difusión en discos sobre placa de agar previamente inoculadas, por curvas de crecimiento y por ensayos de viabilidad. Posteriormente se analizarán las alteraciones nutricionales y organolépticas en muestras de leche en condiciones de iluminación y temperatura que simulen las de almacenamiento. Para tal fin, se evaluará la estabilidad de proteínas y vitaminas, por electroforesis capilar, la formación de compuestos volátiles se determinará por cromatografía de gases y el desarrollo de microorganismos por recuento estándar en placa. Finalmente se evaluará el efecto de la adición de carotenoides y flavonoides microencapsulados sobre la degradación de proteínas y vitaminas, la formación de off-flavor y el desarrollo de microorganismos durante el almacenamiento de leche. Con este proyecto se pretende determinar tanto la capacidad antioxidante como antimicrobiana de carotenoides y flavonoides puros y microencapsulados, así como de los biopolímeros usado para la microencapsulación y su potencial aplicación como conservantes en leche en la formulación de productos nutracéuticos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Se estudiarán los mecanismos de reacción electroquímica de las micotoxinas (metabolitos tóxicos generados por hongos) citrinina (CIT), patulina (PAT) y moniliformina (MON), de los antioxidantes naturales alfa, beta, gama y delta tocoferoles, de los flavonoides fisetina (FIS), morina (MOR), luteolina (LUT), rutina (RUT), buteina (BUT), naringenina (NAR) y miricetina (MIR) y de las hormonas esteroides estradiol (EDIOL), estrona (EONA) y estriol (ETRIOL). Por otra parte, se implementarán técnicas electroanalíticas para la detección y cuantificación de estos sustratos en muestras de matrices naturales que los contengan. Se realizará el diseño y caracterización de biosensores enzimáticos a partir de peroxidasas y/o fosfatasa alcalina para la determinación de la micotoxina CIT y de los flavonoides y, por otro, de inmunosensores para las micotoxinas ocratoxina A (OTA) y PAT y hormonas. Para el anclaje de enzimas y/o anticuerpos, se estudiarán las propiedades de electrodos modificados por monocapas autoensambladas, nanotubos de carbono y partículas magnéticas. Se usarán las técnicas de voltamperometría cíclica, de onda cuadrada y de redisolución con acumulación adsortiva, espectroscopías de impedancia electroquímica, electrólisis a potencial controlado, uv-vis e IR, microbalanza de cristal de cuarzo y microscopías de alta resolución (SEM, TEM, AFM). La importancia de este proyecto apunta a la obtención de nuevos datos electroquímicos de los sustratos indicados y conocimientos relacionados con la aplicación de electrodos modificados en la preparación de biosensores y en el desarrollo de técnicas alternativas para la determinación de los analitos mencionados precedentemente. Electrochemical reaction mechanisms of mycotoxins (toxic metabolites generated by fungi) citrinin (CIT), Patulin (PAT) and moniliformin (MON), natural antioxidants alpha, beta, gamma and delta tocopherols, flavonoids fisetin (FIS), morin (MOR), luteolin (LUT), rutin (RUT), butein (BUT), naringenin (NAR), miricetin (MIR) and steroid hormones estradiol (EDIOL), estrone (EONA) and estriole (ETRIOL) will be explored. On the other hand, electroanalytical techniques for the detection and quantification of these substrates in samples of natural matrices will be implemented. The design and characterization of enzymatic biosensors from peroxidases and/or from alkaline phosphatase for the determination of CIT and flavonoids, and also of inmunosensors for ochratoxin A (OTA) and PAT and hormones will be performed. For the anchor of enzymes and/or antibody, properties of electrodes modified by self assembled monolayers, carbon nanotubes and magnetic particles will be explored. Cyclic, square wave and adsorptive stripping voltammetries, electrochemical impedance spectroscopy, controlled potential electrolysis, uv-vis and IR, quartz crystal microbalance and high-resolution microcopies (SEM, TEM, AFM) will be used. The importance of this project is aimed at obtaining new electrochemical data for the indicated substrates and knowledge on the application of modified electrodes in preparation of biosensors and in the development of alternative techniques for the determination of the above-mentioned analytes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La quinoa (Chenopodium quinoa Willd), es un pseudocereal originario de la región Andina. Fue utilizada como alimento básico por los pueblos nativos. La quinoa, la papa y el maíz constituyeron el trinomio base de la alimentación indígena de este continente. La colonización española fue desplazando su cultivo a favor del trigo europeo y otros cereales, quedando reducida a las zonas altas de la región andina. La Quínoa ha adquirido una considerable atención en los últimos tiempos, principalmente por la calidad de sus proteínas y la ausencia de gluten en ella. Su empleo está ampliamente difundido en los países andinos, especialmente Bolivia y Perú, con un notable crecimiento de la superficie sembrada. En nuestro país la explotación de este cultivo se ubica principalmente en las provincias norteñas de Salta y Jujuy. En estos últimos años se ha reivindicado su cultivo y los granos privados de saponinas son considerados como un excelente alimento, reconocido por la OMS, la FAO y la NASA. Además de la calidad de sus lípidos y vitaminas, y al elevado contenido en almidón, la quinoa posee una proteína de excelente calidad nutricional y libre de gluten, lo que hace a este grano especialmente indicado para la alimentación de personas que sufren de la enfermedad celíaca o del síndrome de intestino irritado. El presente proyecto está orientado al aprovechamiento integral del grano de quinoa. Es nuestra intensión aquí, demostrar que dicho grano, cultivado en la provincia de Córdoba, permitirá elaborar productos alimenticios asi como también derivados de su industrialización. Para este objetivo se cuenta con las instalaciones de la Planta Piloto del Instituto de Ciencia y Tecnología de los Alimentos (ICTA), de la UNC, así como de intrumental moderno y acorde, como HPLC, GC, Espectrofotómetro UV-Vis, rotavapores de laboratorio e industrial, cámara fría, balanzas analíticas y de precisión, muflas, estufas, molinos y tamices, así como también, contamos con profesionales, algunos de ellos realizando su tesis doctoral en este tema. En cuanto a los objetivos que se persiguen, se espera obtener productos tales como sopas, papillas, productos para panadería y galletería y salsas. En el plano industrial, se pretende elaborar concentrados proteicos, almidón y saponinas. Como se dijo más arriba, a nivel internacional la quinoa ha comenzado a extender sus fronteras, y es así que hoy el principal productor mundial de este grano, Bolivia, destina un porcentaje importante de su producción a la exportación. La creciente demanda mundial de quinoa a hecho que se constituya en un cultivo estratégico y de alto valor, con precios internacionales que rondan los U$S 1200 la tonelada. Si a esto unimos que la planta presenta una gran resistencia a la sequía, que se adapta bien a terrenos salitrosos, arenosos y pobres, podemos comprender la importancia que adquiere para nuestra provincia, toda vez que en la misma existen zonas geográficas potencialmente aptas para su cultivo. Quinoa (Chenopodium quinoa Willd) is a pseudocereal originating in the Andean region. It was used as a staple food by native peoples. Quinoa, potatoes and corn were the tree most important indigenous staple food to this part of South America. Spanish colonization was marginalized cultivation in favor of European wheat and other grains, displacing it to the highlands of the Andean region. Quinoa has recently gained considerable attention, mainly by its protein quality and lack of gluten. Its use is widespread in the Andean countries, especially Bolivia and Peru, with a notable increase in plantings. In our country, the exploitation of this crop is located mainly in the northern provinces of Salta and Jujuy. In recent years its cultivation has been promoted, and the grains once free of saponins are considered an excellent food, recognized by WHO, FAO and NASA. In addition to its lipid and vitamins, and high starch contain, quinoa protein has an excellent nutritional value and it is free of gluten, making it particularly suitable for this grain to feed people with celiac disease or irritable bowel syndrome. This project aims at an integral development of quinoa grain. It is our intention here to demonstrate that this grain grown in the province of Córdoba, can produce food products resulting from local industrialization. This team has access to the facilities of the Pilot Plant of the Institute of Science and Food Technology (ICTA) of the UNC, and the modern equipments in it, as HPLC, GC, UV-Vis spectrophotometer, laboratory and industrial rotary evaporators, cold storage, analytical and precision balances, flasks, ovens, grinders and screens. Also, we have an important professional staff, some of them doing their thesis on this subject. With regard to the objectives pursued, we expect to obtain products such as soups, baby food, bakery products and biscuits and sauces. At the industrial level, it aims at producing protein concentrates, starch and saponins.