3 resultados para Tensões normais MOR

em Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identificación y caracterización del problema: El fenotipo floral puede explicarse como respuesta adaptativa a los polinizadores. Sin embargo, está también influido por otros procesos como aislamiento geográfico, contexto histórico, efectos ambientales así como limitaciones filogenéticas y de desarrollo. Aunque las presiones selectivas ejercidas por un grupo funcional de polinizadores es supuestamente una característica prevalente que subyace a la evolución floral y especiación en los estudios de la biología evolutiva de las flores, la evidencia sobre importancia de los polinizadores como fuerzas moldeadoras del fenotipo floral es escasa y equívoca. Hipótesis Los patrones de variación de caracteres florales relacionados al ajuste flor-polinizador son explicados por la selección contemporánea y pasada ejercida por los polinizadores más eficientes. Objetivos: Estudiar la influencia de los polinizadores y de otros procesos como aislamiento geográfico, contexto histórico, efectos ambientales así como limitaciones filogenéticas y de desarrollo, como fuerzas moldeadoras del fenotipo floral dentro y entre poblaciones de una misma especie, así como entre especies diferentes. Materiales y métodos: Se encarará el estudio de sistemas plantas-polinizador sobre cuyo funcionamiento tenemos conocimientos previos y resultados publicados con aproximaciones que resultaron exitosas en otros estudios realizados por nosotros o con aproximaciones que son novedosas en los estudios de estos sistemas. Se integrarán aproximaciones de morfometría clásica y geométrica, de análisis filogenético y filogeográfico, análisis de contrastes independientes, de modelado predictivo de nicho, de selección e integración fenotípica en distintas especies o grupos de especies. Resultados esperados Los estudios de selección fenotípica deberán servir para demostrar si caracteres claves en el ajuste flor-polinizador son contemporáneamente blanco de la selección natural, si similar selección pasada ha dejado su impronta en la estructura de covariación (integración) y si esos caracteres son heredables. A nivel inter-poblacional, se espera demostrar que esta variación geográfica en atributos florales está relacionada con el ensamble de polinizadores cambiantes, y que esta variación se reflejada en la estructura genética geográfica, y que distintos escenarios selectivos (históricos y ecológicos como distintos ensambles de polinizadores) tienen consecuencias en los patrones de selección contemporánea (selección fenotípica) o pasada (integración). A nivel inter-específico, sobre estos antecedentes se plantean dos posibles situaciones de estudio en especies de plantas filogenéticamente hermanas que conviven y que ya sea, que comparten la misma especie de abeja polinizadora o que presentan dos sistemas de polinización contrastantes (aves o abejas) y forman una zona híbrida. Importancia del proyecto: Poder responder preguntas relevantes sobre biología evolutiva tomando como modelo al efecto selectivo de polinizadores sobre distintas especie de plantas nativas del Córdoba y otras regiones del país. Por otro lado, el conocimiento de los sistemas planta/polinizador impacta sobre la conservación de interacciones, el sustento de la biodiversidad. Esto contribuiría a la elaboración de protocolos de conservación de especies nativas del país.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se indagará principalmente acerca del rol de los procesos neutrales, como la deriva génica, de procesos selectivos, como la selección natural mediada por polinizadores y de procesos históricos (geológicos y climáticos del pasado) en la diversificación floral tanto a escala microevolutiva como macroevolutiva. La heterogeneidad ambiental que se presenta en amplios rangos geográficos puede promover la diferenciación entre poblaciones debido a las diferencias en condiciones físicas y biológicas. De esta manera, especies ampliamente distribuidas ofrecen la oportunidad de explorar la dinámica de los procesos evolutivos que tienen lugar a nivel interpoblacional (Dobzhansky 1970, Thompson 1999). El estudio comparativo entre especies hermanas permite comprender cómo la selección natural (adaptación) y la inercia filogenética (herencia ancestral) han modelado los rasgos de las especies que observamos en la actualidad (Díaz 2002, Schluter 2000, Futuyma 2005). Uno de los usos más importantes de la información filogenética es el de reconstruir la historia del cambio evolutivo en caracteres adaptativos mediante su mapeo en la filogenia y la reconstrucción del estado de estos caracteres en el ancestro. Así, la asociación entre transición de caracteres y transiciones en grupos funcionales es una evidencia directa de la hipótesis adaptativa de que los rasgos son seleccionados por grupos funcionales de polinizadores. Una aproximación filogenética puede permitir identificar la dirección y el tiempo de evolución. Todos estos aspectos señalan la necesidad de adoptar una perspectiva conceptualmente integrada (morfológica, genética, filogenética, filogeográfica y ecológica) en el estudio de la biología evolutiva de las flores. Estudiar como actúan los procesos micro- y macroevolutivos en las interacciones planta-polinizador, en una dimensión espacial y temporal, arrojará resultados importantes tanto en el campo teórico como en el de la conservación. Por una parte, permitirá poner a prueba hipótesis relevantes sobre la adaptación de caracteres, mientras que explorará los procesos evolutivos que subyacen a las tramas de las interacciones planta-polinizador; por otro lado, comprender el rol de los cambios climáticos pasados en la diversificación biológica es interesante tanto desde una aproximación evolutiva como desde la biología de la conservación (Avise 2000; Moritz et al. 2000; Petit et al. 2003; Hewitt 2004). Géneros a ser estudiados en este proyecto: 1- Anarthrophyllum (Fabaceae,15 spp), 2- Monttea (Plantaginaceae, 3 spp), 3- Caleolaria (Calceolariaceae 3 spp), 4- Centris (Apidae, 1 spp), 5- Jaborosa (Solanaceae, 23 spp). Metodología: Mapeado de las poblaciones. Elenco de polinizadores, frecuencia. Obtención y medición de caracteres fenotípicos florales. Néctar: concentración y vol. Aceites (peso); Morfometría geométrica (Zelditch et al. 2005). Éxito reproductivo (Dafni & Kevan 2003). Caracteres genéticos: extracción, amplificación y secuenciación: en Calceolaria se utilizarán 2 genes de cloroplasto trnH-psbA y trnS-trnG y genes anónimos nucleares de copia única (scnADN), para Jaborosa se utilizarán 3 genes de cloroplasto (trnH-psbA, TrnD-trnT y ndhF-rp32) y el gen nuclear GBSSI waxy. Finalmente para Centris cineraria se usaría el tRNA ILE y NADH Deshidrogenada subunidad 2. Análisis filogenéticos de parsimonia (Goloboff et al. 2000, Kitching et al. 1998, Nixon 2002, Farris et al. 1996, Sorenson 1999); Filogeografía: reconstrucción de redes por parsimonia (Clement et al. 2000; Posada et al. 2000), análisis de clados anidados (NCPA). Se usarán las claves de inferencia (Templeton 2004). Para todos estos análisis se utilizarán los siguientes programas: DnaSP, Network, Arlequin, MrBayes, Paup, ModelTest, Beast, TNT, WinClada TCS y GeoDis. Estadística multivariada: Los diferentes rasgos florales mencionados se analizarán utilizando distancias de Gower (datos cualitativos) y euclídeas (datos cuantitativos) mediante la técnica multivariada ACoP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se estudiarán los mecanismos de reacción electroquímica de las micotoxinas (metabolitos tóxicos generados por hongos) citrinina (CIT), patulina (PAT) y moniliformina (MON), de los antioxidantes naturales alfa, beta, gama y delta tocoferoles, de los flavonoides fisetina (FIS), morina (MOR), luteolina (LUT), rutina (RUT), buteina (BUT), naringenina (NAR) y miricetina (MIR) y de las hormonas esteroides estradiol (EDIOL), estrona (EONA) y estriol (ETRIOL). Por otra parte, se implementarán técnicas electroanalíticas para la detección y cuantificación de estos sustratos en muestras de matrices naturales que los contengan. Se realizará el diseño y caracterización de biosensores enzimáticos a partir de peroxidasas y/o fosfatasa alcalina para la determinación de la micotoxina CIT y de los flavonoides y, por otro, de inmunosensores para las micotoxinas ocratoxina A (OTA) y PAT y hormonas. Para el anclaje de enzimas y/o anticuerpos, se estudiarán las propiedades de electrodos modificados por monocapas autoensambladas, nanotubos de carbono y partículas magnéticas. Se usarán las técnicas de voltamperometría cíclica, de onda cuadrada y de redisolución con acumulación adsortiva, espectroscopías de impedancia electroquímica, electrólisis a potencial controlado, uv-vis e IR, microbalanza de cristal de cuarzo y microscopías de alta resolución (SEM, TEM, AFM). La importancia de este proyecto apunta a la obtención de nuevos datos electroquímicos de los sustratos indicados y conocimientos relacionados con la aplicación de electrodos modificados en la preparación de biosensores y en el desarrollo de técnicas alternativas para la determinación de los analitos mencionados precedentemente. Electrochemical reaction mechanisms of mycotoxins (toxic metabolites generated by fungi) citrinin (CIT), Patulin (PAT) and moniliformin (MON), natural antioxidants alpha, beta, gamma and delta tocopherols, flavonoids fisetin (FIS), morin (MOR), luteolin (LUT), rutin (RUT), butein (BUT), naringenin (NAR), miricetin (MIR) and steroid hormones estradiol (EDIOL), estrone (EONA) and estriole (ETRIOL) will be explored. On the other hand, electroanalytical techniques for the detection and quantification of these substrates in samples of natural matrices will be implemented. The design and characterization of enzymatic biosensors from peroxidases and/or from alkaline phosphatase for the determination of CIT and flavonoids, and also of inmunosensors for ochratoxin A (OTA) and PAT and hormones will be performed. For the anchor of enzymes and/or antibody, properties of electrodes modified by self assembled monolayers, carbon nanotubes and magnetic particles will be explored. Cyclic, square wave and adsorptive stripping voltammetries, electrochemical impedance spectroscopy, controlled potential electrolysis, uv-vis and IR, quartz crystal microbalance and high-resolution microcopies (SEM, TEM, AFM) will be used. The importance of this project is aimed at obtaining new electrochemical data for the indicated substrates and knowledge on the application of modified electrodes in preparation of biosensors and in the development of alternative techniques for the determination of the above-mentioned analytes.