3 resultados para TIO2 NANORODS
em Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina
Resumo:
El objetivo general de este proyecto de investigación es diseñar, desarrollar y optimizar superficies con propiedades especificas para ser utilizadas como sensores y biosensores, materiales biocompatibles, columnas para separaciones por electroforesis capilar, matrices para la liberación controlada de fármacos y sorbentes para remediación ambiental. Para concretar este objetivo, se propone específicamente modificar superficies o particulas apuntando a optimizar un sistema concreto relevante en aplicaciones farmaceuticas, ambientales o biomedicas: 1. Modificacion de arcillas naturales o sinteticas para desarrollar matrices portadoras de farmacos o sorbentes para remediacion ambiental:1.1 Estudiar ilitas modificadas con Fe(III) para maximizar las propiedades adsortivas frente a aniones contaminantes como arsenico. 1.2 Sintetizar LDH de Al y Mg modificados con compuestos de interés farmacéutico para diseñar sistemas de liberación controlada.2. Modificación de canales de chips y electrodos para optimizar la separación, detección y cuantificación de compuestos farmacéutico: 2.1 Diseñar y construir microchips para la separación por EC de compuestos de base fenólica.2.2 Evaluar polímeros que mejoren la respuesta y/o estabilidad de electrodos de Carbono para ser usados como detectores amperométrico de compuestos de base fenólica en sistemas FIA y miniaturizados de análisis integrados.3. Modificación de superficies sólidas con biomoléculas para el desarrollo y optimización de superficies de bio-reconocimiento:3.1 Evaluar el comportamiento de superficies de titanio modificadas con TiO2 y depósitos inorgánicos frente a la interacción con proteínas plasmáticas (PP) para el análisis de la biocompatibilidad superficial.3.2 Diseñar y desarrollar superficies biofuncionales para el reconocimiento especifico de D-aminoácidos, anticuerpos en pacientes chagásicos y simple hebra de ADN. Las técnicas que se emplearán para llevar a cabo el proyecto dependen del tipo de sistema de estudio. En particular los estudios correspondientes al objetivo 1 se realizarán mediante análisis químicos, térmico, DXR, SEM, IR, BET así como mediante titulaciones ácido-base potenciométricas, movilidades electroforéticas, cinética e isotermas de adsorción.En general para desarrollar el objetivo 2 se utilizarán técnicas electroquímicas clásicas para la caracterización de los electrodos, los que luego se utilizarán como detectores en un sistema FIA amperométrico, mientras que los microchips se emplearán en electroforesis capilar para la separación de diferentes compuestos de interés farmacéutico.Finalmente, el objetivo 3 se llevará a cabo por un lado modificando electrodos de titanio con distintos depósitos (electroquímicas, sol-gel, térmicas) de TiO2 e hidroxiapatita y evaluando la interacción con proteínas plasmáticas para analizar la biocompatibilidad de los materiales preparados. Por otro lado, se estudiará el proceso de adsorción-desorción de D-aminoácido oxidasa, antígenos del T. Cruzi y ADN de simple hebra para optmizar la capacidad de bio-reconocimiento superficial de D-aminoácidos, anticuerpos de chagásicos y de cadena complementaria de ADN. Para concretar este objetivo se utilizarán técnicas electroquímicas, espectroscópicas y microscopias.Debido al carácter multidisciplinario del presente proyecto de investigación, su ejecución se llevara a cabo a través de la colaboración de investigadores pertenecientes a distintas áreas de la Química y permitirá continuar con la formación de recursos humanos mediante la realización de tesis doctorales y estadías postdoctorales.
Resumo:
El hidrógeno tiene, actualmente, una atención considerable por su posible uso como combustible limpio y otros usos industriales y se ha demostrado que es posible hacer funcionar motores de combustión interna, por lo tanto es una alternativa viable respecto de fuentes de energía no renovables como el petróleo y tal vez sea en el futuro la tecnología más prometedora para reducir la contaminación, conservando el suministro de combustibles fósiles. Uno de los principales problemas para la utilización del hidrógeno como combustible es el del almacenamiento para que pueda ser seguro y transportable con todos los riesgos que esto supone. En este sentido el estudio de la adsorción de polímeros conductores (tal como polianilina, PANI o polipirrol PPy) y su posterior polimerización sobre hospedajes como aluminosilicatos meso y microporosos y carbones mesoporosos, es de suma importancia por sus propiedades para el almacenamiento de H2. El objetivo general de este proyecto es Investigar el almacenamiento de hidrógeno en nuevos composites nano/microestructurados. La síntesis de materiales micro/mesoporosos (MFI, MEL, BEA, L, MS41, SBA-15, SBA-1, SBA-3, SBA-16, CMK-3) para usos como hospedaje se realizan por sol-gel o síntesis hidrotérmica y se modificarán con TiO2, CeO2, ZrO2 y eventualmente con Ir, Ni, Zr. Muestras de estos hospedajes serán expuestos a vapores del monómero puro (anilina o pirrol). Luego se polimerizarán por polimerización oxidativa. Los nanocomposites sintetizados se caracterizarán por XRD, FTIR, DSC, TGA, SEM, TEM, EXFAS, XANES, UV-Vis. La adsorción de hidrógeno sobre los composites se llevará a cabo en un Reactor Parr, desde presiones atmosféricas y a altas presiones y varias temperaturas de adsorción . Los estudios de desorción de hidrogeno se llevarán a cabo en un equipo Chemisorb Micrometrics y se realizarán estudios termogravimétricos y de capacidad de retención de Hidrogeno por el nanocomposite. La importancia del estudio de este proceso tiene importantes implicancias económicas y sociales que serán preponderantes en el futuro debido a las cada vez más exigentes regulaciones ambientales. Además se contribuirá al avance del conocimiento científico, ya que es posible diseñar nuevos materiales, los que además permitirán generar reservorios de H2 con alta eficiencia. Por lo consiguiente: - Se desarrollarán nuevos materiales nanoestructurados, micro y mesoporosos y nanoclusters de especies activas en los hospedajes como así también la inclusión de polímeros (PANI, PPy) dentro de los canales de estos materiales. - Se caracterizarán estos materiales por métodos espectroscópicos (fisicoquímica de superficie). - Se estudiará la adsorción /absorcion de H2 en los nuevos materiales desarrollados. -Se aplicarán métodos de diseño de experimento (RDS), para optimizar el proceso de almacenamiento de H2, nivel de interacción de variables sinérgicas o colinérgicas.
Resumo:
El creciente desarrollo de la industria del cuero y textil en nuestro país, y específicamente en la provincia de Córdoba, ha hecho resurgir en los ultimos años una problemática aún no resuelta que es la elevada contaminación de los recursos hídricos. En ambas industrias, la operación de teñido involucra principalmente colorantes de tipo azoico los cuales son "no biodegradables" y se fragmentan liberando aminas aromáticas cancerígenas. Para abordar esta problemática, la fotocatálisis heterogénea aparece como una nueva tecnología que permitiría la completa mineralización de estos colorantes. A través de radiación y un fotocatalizador sólido adecuado se pueden generan radicales libres eficientes para la oxidación de materia orgánica (colorantes) en medio acuoso. En este sentido, se proponen tamices moleculares mesoporosos modificados con metales de transición (MT) como fotocatalizadores potencialmente aptos para la degradación de estos contaminantes. El propósito principal de este proyecto es el diseño, síntesis, caracterización y evaluación de materiales mesoporosos que presenten actividad fotocatalítica ya sea mediante la modificación de su estructura con diversos metales fotosensibles y/o empleándolos como soporte de óxido de titanio. Se pretende evaluar estos materiales en la degradación de colorantes intentando desplazar su fotosensibilidad hacia la radiación visible para desarrollar nuevas tecnologías con menor impacto ambiental y mayor aprovechamiento de la energía solar. Para ello se sintetizarán materiales del tipo MCM-41 modificados con distintos MT tales como Fe, Cr, Co, Ni y Zn mediante incorporación directa del ión metálico o impregnación. Al mismo tiempo, tanto estos últimos materiales como el MCM-41 silíceo serán empleados como soporte de TiO2. Sus propiedades fisicoquímicas se caracterizarán mediante distintas técnicas instrumentales y su actividad fotocatalítica se evaluará en la degradación de colorantes azoicos bajo radiación visible. Se seleccionará el catalizador más eficiente y se estudiarán los diversos factores que afectan el proceso de fotodegradación. Así mismo, el análisis de la concentración del colorante y los productos presentes en el medio en función del tiempo de reacción permitirá inferir sobre la cinética de la decoloración y postular posibles mecanismos de fotodegradación. Con esta propuesta se espera contribuír al desarrollo de un sector industrial importante en nuestra provincia como es el de las industrias del cuero y textil, mediante la generación de nuevas tecnologías que empleen la energía solar para la degradación de sus efluentes (colorantes). En este sentido, se espera desarrollar nuevos materiales optimizados para lograr la mayor eficiencia fotocatalítica. Esto conduciría entonces hacia la remediación de un problema ambiental de alto impacto tanto para nuestra provincia y nuestro país como para la población mundial, como es la contaminación de los recursos hídricos. Finalmente, con este proyecto se contribuirá a la formación de dos doctorandos y un maestrando, cuyos temas de tesis están vinculados con nuestro objeto de estudio. The increasing development of the textile and leather industries in our country, and specifically in Córdoba, has revived an unresolved problem that is the high contamination of water resources. In both industries, the dyeing involves mainly type azoic dyes which are not biodegradable and break releasing carcinogenic aromatic amines. Heterogeneous photocatalysis appears as a new technology that would allow the complete mineralization of these pollutants. Through radiation and a suitable solid it is possible to generate free radicals for efficient oxidation of organic matter (dyes) in aqueous medium. In this respect, mesoporous molecular sieves modified with transition metals are proposed as potential photocatalysts. The main purpose of this project is the synthesis of mesoporous materials having photocatalytic activity for the degradation of dyes. We will try to move their photosensitivity to visible radiation to develop new technologies with lower environmental impact and greater use of solar energy. Materials MCM-41 modified with metals (Fe, Cr, Co, Ni and Zn) will be synthesized by direct incorporation or impregnation. These materials and the siliceous MCM-41 will be then employed as support of TiO2. The materials will be evaluated in the photocatalytic degradation of azoic dyes under visible radiation. The influence of different factors on the photodegradation proccess will be studied. Kinetic studies will be carried out and a possible reaction way will be proposed. Thus, this work will contribute to the advancement of an important industrial sector and the remediation of an environmental problem with high impact for our province and our country. Moreover, this proyect will contribute to the development of two doctoral tesis and one magister tesis which are vinculated with our study subject.