8 resultados para Nanopartículas de TiO2

em Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se busca profundizar en el entendimiento del transporte cuántico prediciendo y observando efectos de interferencias temporales (ecos mesoscópicos) y espaciales. Estos conocimientos se aplican a la difusión de excitaciones, cuantificando así las interacciones que controlan la relajación. En el caso de espines, se desarrollan métodos de análisis que permiten una mejor cuantificación de las interacciones magnéticas. Se posibilita así la caracterización de moléculas y nanopartículas metálicas por RMN. En el caso de microdispositivos, el control de las excitaciones cuánticas nos permitió el diseño de un amplificador de ultra-sonido por emisión estimulada (SASER) que convierte las excitaciones electrónicas en ultrasonido. Objetivos En lo relativo al transporte de carga, se quiere optimizar los parámetros del dispositivo SASER (amplificador de ultra-sonido por emisión estimulada). Se estudiará la compatibilidad de las aproximaciones de transporte coherente y secuencial. Por otra parte se continuará con el estudio de las manifestaciones del confinamiento electrónico en una nanoestructura en el espectro de RMN de núcleos metálicos para lograr un mejor ajuste con los resultados experimentales. En lo relativo al transporte de magnetización, el objetivo teórico es encontrar las condiciones para la observación de ecos cuánticos así como otros fenómenos temporales en el transporte de espines en molécula, procurando extenderlos al transporte de carga en microdispositivos. Se desea evaluar la influencia de interacciones de muchas partículas y otras interacciones que rompen la coherencia de fase en la descripción dinámica de las excitaciones. En la parte experimental, se crecen monocristales de moléculas orgánicas susceptibles de presentar los ecos dinámicos estudiados en la parte teórica. (...) También deseamos explorar la difusión de magnetización mediante el análisis de Coherencias Cuánticas Múltiples. En síntesis, se espera mejorar la cuantificación e identificación de los ecos medidos en ferroceno y cimantreno, incorporando el efecto de las interacciones que rompen la coherencia de fase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se propone sintetizar nuevos materiales como bloques de construcción de estructuras en escala nanometrica o micrométrica: nanotubos de carbono funcionalizados; nanopartículas metálicas; hidrogeles inteligentes; carbones mesoporosos. Con ellos se construiran interfaces solido/liquido estructuradas: multicapas autoensambladas, patrones micrométricos con heterogeneidad tridimensional y estructuras jerárquicas. Se estudiara el intercambio de especies móviles en las interfaces usando técnicas electroquímicas, espectroelectroquimicas, ópticas y de microscopia. De esta manera se podran controlar el intercambio en esa interface. En base a este conocimientos se desarrollaran aplicaciones tecnológicas tales como sensores de oligonucletidos, microceldas de combustible, arreglos de microelectrodos y supercapacitores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo general de este proyecto de investigación es diseñar, desarrollar y optimizar superficies con propiedades especificas para ser utilizadas como sensores y biosensores, materiales biocompatibles, columnas para separaciones por electroforesis capilar, matrices para la liberación controlada de fármacos y sorbentes para remediación ambiental. Para concretar este objetivo, se propone específicamente modificar superficies o particulas apuntando a optimizar un sistema concreto relevante en aplicaciones farmaceuticas, ambientales o biomedicas: 1. Modificacion de arcillas naturales o sinteticas para desarrollar matrices portadoras de farmacos o sorbentes para remediacion ambiental:1.1 Estudiar ilitas modificadas con Fe(III) para maximizar las propiedades adsortivas frente a aniones contaminantes como arsenico. 1.2 Sintetizar LDH de Al y Mg modificados con compuestos de interés farmacéutico para diseñar sistemas de liberación controlada.2. Modificación de canales de chips y electrodos para optimizar la separación, detección y cuantificación de compuestos farmacéutico: 2.1 Diseñar y construir microchips para la separación por EC de compuestos de base fenólica.2.2 Evaluar polímeros que mejoren la respuesta y/o estabilidad de electrodos de Carbono para ser usados como detectores amperométrico de compuestos de base fenólica en sistemas FIA y miniaturizados de análisis integrados.3. Modificación de superficies sólidas con biomoléculas para el desarrollo y optimización de superficies de bio-reconocimiento:3.1 Evaluar el comportamiento de superficies de titanio modificadas con TiO2 y depósitos inorgánicos frente a la interacción con proteínas plasmáticas (PP) para el análisis de la biocompatibilidad superficial.3.2 Diseñar y desarrollar superficies biofuncionales para el reconocimiento especifico de D-aminoácidos, anticuerpos en pacientes chagásicos y simple hebra de ADN. Las técnicas que se emplearán para llevar a cabo el proyecto dependen del tipo de sistema de estudio. En particular los estudios correspondientes al objetivo 1 se realizarán mediante análisis químicos, térmico, DXR, SEM, IR, BET así como mediante titulaciones ácido-base potenciométricas, movilidades electroforéticas, cinética e isotermas de adsorción.En general para desarrollar el objetivo 2 se utilizarán técnicas electroquímicas clásicas para la caracterización de los electrodos, los que luego se utilizarán como detectores en un sistema FIA amperométrico, mientras que los microchips se emplearán en electroforesis capilar para la separación de diferentes compuestos de interés farmacéutico.Finalmente, el objetivo 3 se llevará a cabo por un lado modificando electrodos de titanio con distintos depósitos (electroquímicas, sol-gel, térmicas) de TiO2 e hidroxiapatita y evaluando la interacción con proteínas plasmáticas para analizar la biocompatibilidad de los materiales preparados. Por otro lado, se estudiará el proceso de adsorción-desorción de D-aminoácido oxidasa, antígenos del T. Cruzi y ADN de simple hebra para optmizar la capacidad de bio-reconocimiento superficial de D-aminoácidos, anticuerpos de chagásicos y de cadena complementaria de ADN. Para concretar este objetivo se utilizarán técnicas electroquímicas, espectroscópicas y microscopias.Debido al carácter multidisciplinario del presente proyecto de investigación, su ejecución se llevara a cabo a través de la colaboración de investigadores pertenecientes a distintas áreas de la Química y permitirá continuar con la formación de recursos humanos mediante la realización de tesis doctorales y estadías postdoctorales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo general de este proyecto es el estudio de distintos tipos de sistemas organizados, conocer los factores que determinan la forma de organización y las consecuencias que ésta tiene sobre la reactividad de moléculas que se encuentran en ese entorno organizado. Se pretende realizar, desde la fisicoquímica y la síntesis orgánica, aportes a áreas multidisciplinarias como la nanociencia y la nanotecnología. Se sintetizarán ciclodextrinas anfifílicas y se estudiará su comportamiento en solución y en interfases, sus propiedades de agregación y morfología. Se estudiará también la termodinámica de los procesos y la capacidad catalítica de estas ciclodextrinas anfifílicas en superficies bidimensionales en reacciones de hidrólisis de ésteres. Las ciclodextrinas anfifílicas sintetizadas en el laboratorio se utilizarán también en mezclas con otros surfactantes, con el objetivo de generar medios eficientes respecto a la solubilización y extracción de contaminantes orgánicos desde suelos. Se espera encontrar sistemas que presenten efectos sinérgicos. Se determinará el efecto de la formación de complejos con ciclodextrina sobre las propiedades fisicoquímicas y la reactividad de pesticidas de amplio uso en agricultura, en particular de compuestos organofosforados. Se investigarán ciclodextrinas que permitan controlar la liberación del agroquímico y se realizarán estudios de la reactividad de los pesticidas en solución y en medios que simulen el suelo determinando si la inclusión en las ciclodextrinas modifica la velocidad de descomposición. En la búsqueda de nuevos sistemas microheterogéneos se sintetizarán surfactantes gémini con una cadena hidrocarbonada y una perfluorada y se determinarán sus propiedades. Luego de su caracterización, estos surfactantes se aplicarán en estudios de reactividad de compuestos insolubles en agua.Se estudiará la formación de complejos de ciclodextrina con metales de transición y los mismos se utilizarán como catalizadores en reacciones de oxidación de sulfuros y de alquenos en medios acuosos y no acuosos buscando condiciones donde se logre inducción quiral. Se sintetizarán compuestos azufrados polifuncionales con los cuales se modificarán superficies de nanopartículas por quimioadsorción de los mismos. Dado que se pretende obtener compuestos con propiedades específicas que dependen de su estructura, se llevará a cabo el modelado computacional de las distintas moléculas en estudio, ya que esto podría aportar datos relevantes acerca de qué modificaciones estructurales podrían intensificar la propiedad o propiedades buscadas. En una etapa posterior se correlacionarán las propiedades predichas a través de cálculos teóricos con las observadas experimentalmente, lo que intrínsecamente conlleva a un mayor conocimiento del sistema.Los estudios propuestos en este proyecto permitirán avanzar en la comprensión de los factores supramoleculares que controlan y modulan la interacción de ligandos con sus receptores en interfases y la ocurrencia de reacciones hidrolíticas en interfases autoorganizadas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los requerimientos de métodos analíticos que permitan realizar determinaciones más eficientes en diversas ramas de la Química, así como el gran desarrollo logrado por la Nanobiotecnología, impulsaron la investigación de nuevas alternativas de análisis. Hoy, el campo de los Biosensores concita gran atención en el primer mundo, sin embargo, en nuestro país es todavía un área de vacancia, como lo es también la de la Nanotecnología. El objetivo de este proyecto es diseñar y caracterizar nuevos electrodos especialmente basados en el uso de nanoestructuras y estudiar aspectos básicos de la inmovilización de enzimas, ADN, aptámeros, polisacáridos y otros polímeros sobre dichos electrodos a fin de crear nuevas plataformas de biorreconocimiento para la construcción de (bio)sensores electroquímicos dirigidos a la cuantificación de analitos de interés clínico, farmaco-toxicológico y ambiental.Se estudiarán las propiedades de electrodos de C vítreo, Au, "screen printed" y compósitos de C modificados con nanotubos de C (CNT) y/o nanopartículas (NP) de oro y/o nanoalambres empleando diversas estrategias. Se investigarán nuevas alternativas de inmovilización de las biomoléculas antes mencionadas sobre dichos electrodos, se caracterizarán las plataformas resultantes y se evaluarán sus posibles aplicaciones analíticas al desarrollo de biosensores con enzimas y ADNs como elementos de biorreconocimiento. Se funcionalizarán CNT con polímeros comerciales y sintetizados en nuestro laboratorio modificados con moléculas bioactivas. Se diseñarán y caracterizarán nuevas arquitecturas supramoleculares basadas en el autoensamblado de policationes, enzimas y ADNs sobre Au. Se evaluarán las propiedades catalíticas de NP de magnetita y de perovskitas de Mn y su aplicación al desarrollo de biosensores enzimáticos. Se diseñarán biosensores que permitan la detección altamente sensible y selectiva de secuencias específicas de ADNs de interés clínico. Se estudiará la interacción de genotóxicos con ADN (en solución e inmovilizado) y se desarrollarán biosensores que permitan su cuantificación. Se construirán biosensores enzimáticos para la cuantificación de bioanalitos, especialmente glucosa, fenoles y catecoles, y sensores electroquímicos para la determinación de neurotransmisores, ácido úrico y ácido ascórbico. Se diseñarán nuevos aptasensores electroquímicos para la cuantificación de biomarcadores, comenzando por lisozima y trombina y continuando con otros de interés regional/nacional.Se emplearán las siguientes técnicas: voltamperometrías cíclica (CV), de pulso diferencial (DPV) y de onda cuadrada (SWV); "stripping" potenciométrico a corriente constante (PSA); elipsometría; microbalanza de cristal de cuarzo con cálculo de pérdida de energía por disipación (QCM-D); resonancia de plasmón superficial con detección dual (E-SPR); espectroscopía de impedancia electroquímica (EIE); microscopías de barrido electroquímico (SECM), de barrido electrónico (SEM), de transmisión (TEM) y de fuerzas atómicas (AFM); espectrofotometría UV-visible; espectroscopías IR, Raman, de masas, RMN.Se espera que la inclusión de los CNT y/o de las NP metálicas y/o de los nanoalambres en los diferentes electrodos permita una mejor transferencia de carga de diversos analitos y por ende una detección más sensible y selectiva de bioanalitos empleando enzimas, ADN y aptámeros como elementos de biorreconocimiento. Se espera una mayor eficiencia en los aptasensores respecto de los inmunosensores, lo que permitirá la determinacion selectiva de diversos biomarcadores. La modificación de electrodos con nanoestructuras posibilitará la detección altamente sensible y selectiva del evento de hibridación. La respuesta obtenida luego de la interacción de genotóxicos con ADN permitirá un mejor conocimiento de la asociación establecida, de la cinética y de las constantes termodinámicas. Los neurotransmisores podrán ser determinados a niveles nanomolares aún en muestras complejas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La diarrea neonatal representa uno de los problemas sanitarios de mayor relevancia en las primeras semanas de vida del cerdo. Provoca importantes pérdidas económicas por morbilidad y mortalidad. El cultivo de enterocitos primarios representa una herramienta valiosa para el estudio de patologías causadas por agentes infecciosos que afectan la integridad del epitelio intestinal. La producción de anticuerpos extraídos a partir de la yema de huevo de gallinas inmunizadas (IgY), es una tecnología innovadora, que ha mostrado ser protectiva contra diarreas causadas por agentes víricos y bacterianos. La nanotecnología permite mejorar la eficiencia en la administración de distintas drogas. Los nanotubos de carbono han ganado una enorme popularidad por sus propiedades y aplicaciones únicas. La investigación sobre los aspectos toxicológicos de estas nanopartículas es escasa. Una vez dentro de la célula, las nanopartículas pueden inducir estrés oxidativo intracelular por perturbar el equilibrio oxidativo. Las hipótesis de trabajo es: La administración de IgY anti-Escherichia coli a través de nanotubos protegerá in vitro e in vivo a los enterocitos de una infección por E. coli previniendo la diarrea neonatal porcina. Los objetivos del trabajo son: Evaluar la protección por un anticuerpo aviario IgY anti-E. coli aplicado mediante nanotubos de carbono a cultivo de enterocitos porcinos primarios sometidos a una post-infección con E. coli; Analizar los efectos secundarios de los nanotubos con IgY anti-E coli en la citotoxicidad, el balance oxidativo y la apoptosis de los enterocitos porcinos cultivados in vitro y Evaluar la acción terapeútica de la IgY anti-E coli aplicada a porcinos y efectos secundarios de la administración con nanotubos. Se implementará un diseño experimental in vitro con diferentes grupos de cultivos con nanotubos, con IgY anti-E. coli e inespecifica y con exposición a E. coli. Se realizará cultivo de enterocitos porcinos primarios con una técnica de disgregación enzimática con colagenasa según protocolo de Bader et al. (2000). Se evaluará la viabilidad por la prueba de azul tripan. Para la obtención del anticuerpo anti-E. coli aviario se aplicarán un total de 3 dosis de E. coli (109 UFC/ml de adyuvante) a gallinas Legorhn en condiciones fisiológicas. Se recolectarán los huevos diariamente. Se purificará la IgY según método de Polson et al. (1985) utilizando PEG 6000. La concentración de IgY se medirá por ELISA de alta sensibilidad. La IgY será incorporada a nanotubos según protocolo de Acevedo et al. 2006. Para analizar los posibles efectos secundarios de los nanotubos se evaluará: 1. Citotoxicidad por técnica de MTT 2. Estrés oxidativo por técnica de TBARS y 3. Apoptosis por técnica de TUNEL.Además, se implementará un diseño experimental in vivo para probar la acción terapeútica de este nutraceútico aplicados a lechones destetados y los efectos secundarios de la administración con nanotubos. Se realizará un cultivo de enterocitos de lechones que previamente fueron tratados con la IgY anti-E. coli administrada mediante nanotubos y efectuarán las técnicas descriptas anteriormente. Los resultados esperados son: Elaboración de un Ac aviario IgY anti-E. coli para prevenir infección de enterocitos, Profundización en el conocimiento acerca de los efectos citotóxicos de los nanotubos de carbono multilamelares, Generación de tratamiento alternativo para enfermedades entéricas porcinas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El hidrógeno tiene, actualmente, una atención considerable por su posible uso como combustible limpio y otros usos industriales y se ha demostrado que es posible hacer funcionar motores de combustión interna, por lo tanto es una alternativa viable respecto de fuentes de energía no renovables como el petróleo y tal vez sea en el futuro la tecnología más prometedora para reducir la contaminación, conservando el suministro de combustibles fósiles. Uno de los principales problemas para la utilización del hidrógeno como combustible es el del almacenamiento para que pueda ser seguro y transportable con todos los riesgos que esto supone. En este sentido el estudio de la adsorción de polímeros conductores (tal como polianilina, PANI o polipirrol PPy) y su posterior polimerización sobre hospedajes como aluminosilicatos meso y microporosos y carbones mesoporosos, es de suma importancia por sus propiedades para el almacenamiento de H2. El objetivo general de este proyecto es Investigar el almacenamiento de hidrógeno en nuevos composites nano/microestructurados. La síntesis de materiales micro/mesoporosos (MFI, MEL, BEA, L, MS41, SBA-15, SBA-1, SBA-3, SBA-16, CMK-3) para usos como hospedaje se realizan por sol-gel o síntesis hidrotérmica y se modificarán con TiO2, CeO2, ZrO2 y eventualmente con Ir, Ni, Zr. Muestras de estos hospedajes serán expuestos a vapores del monómero puro (anilina o pirrol). Luego se polimerizarán por polimerización oxidativa. Los nanocomposites sintetizados se caracterizarán por XRD, FTIR, DSC, TGA, SEM, TEM, EXFAS, XANES, UV-Vis. La adsorción de hidrógeno sobre los composites se llevará a cabo en un Reactor Parr, desde presiones atmosféricas y a altas presiones y varias temperaturas de adsorción . Los estudios de desorción de hidrogeno se llevarán a cabo en un equipo Chemisorb Micrometrics y se realizarán estudios termogravimétricos y de capacidad de retención de Hidrogeno por el nanocomposite. La importancia del estudio de este proceso tiene importantes implicancias económicas y sociales que serán preponderantes en el futuro debido a las cada vez más exigentes regulaciones ambientales. Además se contribuirá al avance del conocimiento científico, ya que es posible diseñar nuevos materiales, los que además permitirán generar reservorios de H2 con alta eficiencia. Por lo consiguiente: - Se desarrollarán nuevos materiales nanoestructurados, micro y mesoporosos y nanoclusters de especies activas en los hospedajes como así también la inclusión de polímeros (PANI, PPy) dentro de los canales de estos materiales. - Se caracterizarán estos materiales por métodos espectroscópicos (fisicoquímica de superficie). - Se estudiará la adsorción /absorcion de H2 en los nuevos materiales desarrollados. -Se aplicarán métodos de diseño de experimento (RDS), para optimizar el proceso de almacenamiento de H2, nivel de interacción de variables sinérgicas o colinérgicas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El creciente desarrollo de la industria del cuero y textil en nuestro país, y específicamente en la provincia de Córdoba, ha hecho resurgir en los ultimos años una problemática aún no resuelta que es la elevada contaminación de los recursos hídricos. En ambas industrias, la operación de teñido involucra principalmente colorantes de tipo azoico los cuales son "no biodegradables" y se fragmentan liberando aminas aromáticas cancerígenas. Para abordar esta problemática, la fotocatálisis heterogénea aparece como una nueva tecnología que permitiría la completa mineralización de estos colorantes. A través de radiación y un fotocatalizador sólido adecuado se pueden generan radicales libres eficientes para la oxidación de materia orgánica (colorantes) en medio acuoso. En este sentido, se proponen tamices moleculares mesoporosos modificados con metales de transición (MT) como fotocatalizadores potencialmente aptos para la degradación de estos contaminantes. El propósito principal de este proyecto es el diseño, síntesis, caracterización y evaluación de materiales mesoporosos que presenten actividad fotocatalítica ya sea mediante la modificación de su estructura con diversos metales fotosensibles y/o empleándolos como soporte de óxido de titanio. Se pretende evaluar estos materiales en la degradación de colorantes intentando desplazar su fotosensibilidad hacia la radiación visible para desarrollar nuevas tecnologías con menor impacto ambiental y mayor aprovechamiento de la energía solar. Para ello se sintetizarán materiales del tipo MCM-41 modificados con distintos MT tales como Fe, Cr, Co, Ni y Zn mediante incorporación directa del ión metálico o impregnación. Al mismo tiempo, tanto estos últimos materiales como el MCM-41 silíceo serán empleados como soporte de TiO2. Sus propiedades fisicoquímicas se caracterizarán mediante distintas técnicas instrumentales y su actividad fotocatalítica se evaluará en la degradación de colorantes azoicos bajo radiación visible. Se seleccionará el catalizador más eficiente y se estudiarán los diversos factores que afectan el proceso de fotodegradación. Así mismo, el análisis de la concentración del colorante y los productos presentes en el medio en función del tiempo de reacción permitirá inferir sobre la cinética de la decoloración y postular posibles mecanismos de fotodegradación. Con esta propuesta se espera contribuír al desarrollo de un sector industrial importante en nuestra provincia como es el de las industrias del cuero y textil, mediante la generación de nuevas tecnologías que empleen la energía solar para la degradación de sus efluentes (colorantes). En este sentido, se espera desarrollar nuevos materiales optimizados para lograr la mayor eficiencia fotocatalítica. Esto conduciría entonces hacia la remediación de un problema ambiental de alto impacto tanto para nuestra provincia y nuestro país como para la población mundial, como es la contaminación de los recursos hídricos. Finalmente, con este proyecto se contribuirá a la formación de dos doctorandos y un maestrando, cuyos temas de tesis están vinculados con nuestro objeto de estudio. The increasing development of the textile and leather industries in our country, and specifically in Córdoba, has revived an unresolved problem that is the high contamination of water resources. In both industries, the dyeing involves mainly type azoic dyes which are not biodegradable and break releasing carcinogenic aromatic amines. Heterogeneous photocatalysis appears as a new technology that would allow the complete mineralization of these pollutants. Through radiation and a suitable solid it is possible to generate free radicals for efficient oxidation of organic matter (dyes) in aqueous medium. In this respect, mesoporous molecular sieves modified with transition metals are proposed as potential photocatalysts. The main purpose of this project is the synthesis of mesoporous materials having photocatalytic activity for the degradation of dyes. We will try to move their photosensitivity to visible radiation to develop new technologies with lower environmental impact and greater use of solar energy. Materials MCM-41 modified with metals (Fe, Cr, Co, Ni and Zn) will be synthesized by direct incorporation or impregnation. These materials and the siliceous MCM-41 will be then employed as support of TiO2. The materials will be evaluated in the photocatalytic degradation of azoic dyes under visible radiation. The influence of different factors on the photodegradation proccess will be studied. Kinetic studies will be carried out and a possible reaction way will be proposed. Thus, this work will contribute to the advancement of an important industrial sector and the remediation of an environmental problem with high impact for our province and our country. Moreover, this proyect will contribute to the development of two doctoral tesis and one magister tesis which are vinculated with our study subject.