3 resultados para Nano-imprint
em Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina
Resumo:
IDENTIFICACIÓN DEL PROBLEMA DE ESTUDIO. Las sustancias orgánicas solubles en agua no biodegradables tales como ciertos herbicidas, colorantes industriales y metabolitos de fármacos de uso masivo son una de las principales fuentes de contaminación en aguas subterráneas de zonas agrícolas y en efluentes industriales y domésticos. Las reacciones fotocatalizadas por irradiación UV-visible y sensitizadores orgánicos e inorgánicos son uno de los métodos más económicos y convenientes para la descomposición de contaminantes en subproductos inocuos y/o biodegradables. En muchas aplicaciones es deseable un alto grado de especificidad, efectividad y velocidad de degradación de un dado agente contaminante que se encuentra presente en una mezcla compleja de sustancias orgánicas en solución. En particular son altamente deseables sistemas nano/micro -particulados que formen suspensiones acuosas estables debido a que estas permiten una fácil aplicación y una eficaz acción descontaminante en grandes volúmenes de fluidos. HIPÓTESIS Y PLANTEO DE LOS OBJETIVOS. El objetivo general de este proyecto es desarrollar sistemas nano/micro particulados formados por polímeros de impresión molecular (PIMs) y foto-sensibilizadores (FS). Un PIMs es un polímero especialmente sintetizado para que sea capaz de reconocer específicamente un analito (molécula plantilla) determinado. La actividad de unión específica de los PIMs en conjunto con la capacidad fotocatalizadora de los sensibilizadores pueden ser usadas para lograr la fotodescomposición específica de moléculas “plantilla” (en este caso un dado contaminante) en soluciones conteniendo mezclas complejas de sustancias orgánicas. MATERIALES Y MÉTODOS A UTILIZAR. Se utilizaran técnicas de polimerización en mini-emulsión para sintetizar los sistemas nano/micro PIM-FS para buscar la degradación de ciertos compuestos de interés. Para caracterizar eficiencias, mecanismos y especificidad de foto-degradación en dichos sistemas se utilizan diversas técnicas espectroscópicas (estacionarias y resueltas en el tiempo) y de cromatografía (HPLC y GC). Así mismo, para medir directamente distribuciones de afinidades de unión y eficiencia de foto-degradación se utilizaran técnicas de fluorescencia de molécula/partícula individual. Estas determinaciones permitirán obtener resultados importantes al momento de analizar los factores que afectan la eficiencia de foto-degradación (nano/micro escala), tales como cantidad y ubicación de foto- sensibilizadores en las matrices poliméricas y eficiencia de unión de la plantilla y los productos de degradación al PIM. RESULTADOS ESPERADOS. Los estudios propuestos apuntan a un mejor entendimiento de procesos foto-iniciados en entornos nano/micro-particulados para aplicar dichos conocimientos al diseño de sistemas optimizados para la foto-destrucción selectiva de contaminantes acuosos de relevancia social; tales como herbicidas, residuos industriales, metabolitos de fármacos de uso masivo, etc. IMPORTANCIA DEL PROYECTO. Los sistemas nano/micro-particulados PIM-FS que se propone desarrollar en este proyecto se presentan como candidatos ideales para tratamientos específicos de efluentes industriales y domésticos en los cuales se desea lograr la degradación selectiva de compuestos orgánicos. Los conocimientos adquiridos serán indispensables para construir una plataforma versátil de sistemas foto-catalíticos específicos para la degradación de diversos contaminantes orgánicos de interés social. En lo referente a la formación de recursos humanos, el proyecto propuesto contribuirá en forma directa a la formación de 3 estudiantes de postgrado y 2 estudiantes de grado. En las capacidades institucionales se contribuirá al acondicionamiento del Laboratorio para Microscopía Óptica Avanzada (LMOA) en el Dpto. de Química de la UNRC y al montaje de un sistema de microscopio de fluorescencia que permitirá la aplicación de técnicas avanzadas de espectroscopia de fluorescencia de molecula individual.
Resumo:
Se estudiara la síntesis, caracterización y aplicación de Materiales Nanoscópicos (Nanoestructurados, MN y Nanocomposites, NC), con propiedades definidas en el campo de la Energía, Medio Ambiente y Bioingeniería, especialmente las MCM y SBA ( MCM-41 y MCM-48, SBA-1, SBA-3, SBA-15 y SBA-16, Silíceas o Al/Ga/Ti como Heteroátomo, y la Al-SBA-3, recientemente desarrollada por nosotros, primera publicación a nivel mundial). Se pondrá énfasis en el diseño, preparación y caracterización de sus réplicas con C (CMK-1 y CMK-3). Determinación y optimización de las estrategias de síntesis de MN y NC y Nano especies Activas en nuevos catalizadores (Ir/ TiO2, Pt/Pd etc.), cuyas propiedades fundamentales (estructurales, electrónicas, conductividad, actividad catalítica, etc.) sean aplicables en los Campos Citados. Comprensión de los parámetros que definen dichas propiedades, relación estructura/actividad, rediseño y aplicaciones de MN y NC en dos procesos específicos (de los cuales ya hemos publicado resultados): Energía y Medioambiente: 1) Almacenamiento de H2, Adsorción/Absorción de H2 en los MN Silíceos y Carbonosos y NC y Desarrollo de NC híbridos formados por reservorios en base a los MN por oclusión de nano-alambres moleculares de polímeros orgánicos, modificando las propiedades de conductividad / semiconductividad y adsorción de H2; 2) Estudio de las reacciones de hidrotratamiento catalítico (HDT), que comprende la hidrogenación, la hidrodesulfurizacion (HDS) y la hidrodenitrogenacion (HDN) de compuestos refractarios presentes en los cortes de combustibles. La determinación del mecanismo de las reacciones de HDS y HDN.
Resumo:
En Argentina, en consonancia con el resto del mundo, la Nanotecnología es considerada un área estratégica. Sin embargo, las investigaciones en Nanobiotecnología todavía constituyen un área de vacancia. El uso de nanomateriales para desarrollar plataformas bioanalíticas que permitan la construcción de biosensores ofrece múltiples ventajas y una promisoria perspectiva de aplicación en diversas áreas. En la actualidad, los laboratorios de análisis clínicos, la industria farmacéutica y alimentaria, y los laboratorios de control bromatológico y ambiental requieren de metodologías analíticas que proporcionen resultados exactos, reproducibles, rápidos, sensibles y selectivos empleando pequeños volúmenes de muestra, con un mínimo consumo de reactivos y una producción de deshechos limpia y escasa. Las investigaciones en nanobiosensores se encuentran dirigidas hacia el logro de estas metas. Uno de los grandes desafíos es lograr biosensores miniaturizados con potencialidad para el desarrollo de dispositivos de medición descentralizada (“point of care”) y la detección simultánea de multianalitos. Aún cuando se han hecho innumerables desarrollos en los casi 50 años de vida de los biosensores, todavía hay numerosos interrogantes por dilucidar. La modificación con nanomateriales juega un rol preponderante en los transductores tanto en los electroquímicos como en los plasmónicos. El uso de películas delgadas de Au para SPR modificadas con grafeno u óxido de grafeno, es un campo de una enorme potencialidad y sin embargo es muy poco explotado, por lo que reviste gran importancia. En lo referido a la capa de biorreconocimiento, se trabajará con moléculas capaces de establecer interacciones de bioafinidad, como los anticuerpos y también moléculas que son muy poco usadas en nuestro país y en Latinoamérica como ADN, aptámeros, PNA y lectinas. RESUMEN: El Objetivo general de este proyecto es desarrollar nuevas plataformas bioanalíticas para la detección de diferentes eventos de bioafinidad a partir de la integración de transductores electroquímicos (EQ) y plasmónicos con materiales nanoestructurados (nanotubos de carbono, nanoláminas de grafeno, nanoalambres metálicos); biomoléculas (ADN, “peptide nucleic acid” (PNA), aptámeros, anticuerpos, lectinas) y polímeros funcionalizados con moléculas bioactivas. Las arquitecturas supramoleculares resultantes estarán dirigidas al desarrollo de biosensores EQ y plasmónicos para la cuantificación de biomarcadores de relevancia clínica y medioambiental. Se funcionalizarán CNT, grafeno, óxido de grafeno, nanoalambres metálicos empleando homopéptidos y proteínas con alta afinidad por cationes metálicos, los que se integrarán a transductores de carbono y oro y biomoléculas de reconocimiento capaces de formar complejos de afinidad (antígeno-anticuerpo, aptámero-molécula blanco, ADN-ADN, PNA-ADN, lectinas-hidratos de carbono, ligandos-cationes metálicos y avidina-biotina). Se sintetizarán y caracterizarán nuevos monómeros y polímeros funcionalizados con moléculas bioactivas y/o grupos rédox empleando diferentes rutas sintéticas. Se desarrollarán genosensores para la detección del evento de hibridación de secuencias de interés médico (cáncer de colon y de mama, tuberculosis); aptasensores para la detección de marcadores proteicos de T. cruzi, enfermedades cardiovasculares y contaminantes catiónicos; inmunosensores para la detección de biomarcadores proteicos relacionados con enfermedades cardiovasculares y cáncer; y biosensores de afinidad con lectinas para la detección de hidratos de carbono. La caracterización de las plataformas y las señales analíticas se obtendrán empleando las siguientes técnicas: voltamperometrías cíclica, de pulso diferencial y de onda cuadrada; stripping; resonancia de plasmón superficial; espectroscopía de impedancia electroquímica; microscopías de barrido electroquímico, SEM, TEM, AFM,SNOM, espectroscopías: UV-vis, FTIR,Raman;RMN, TGA y DSC.