3 resultados para Motor eléctrico
em Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina
Resumo:
El presente estudio se orienta a materiales de aplicación en la fabricación de motores y transformadores de potencias medias a bajas (laminaciones), abordando en el mismo los aspectos inherentes a la etapa de recocido descarburante realizado por el usuario. Dicho tratamiento térmico permite modificar el contenido de carbono original alcanzando niveles muy bajos (< 0,005%C). Además, se debe aumentar el tamaño de grano a valores óptimos para conseguir las mejores propiedades magnéticas: bajas pérdidas y alta permeabilidad. Este crecimiento de grano está fuertemente influido por las características morfológicas y por la cantidad de partículas de segunda fase precipitadas, de las cuales el nitruro de aluminio (AlN) es el principal inhibidor de crecimiento. Su control o la predicción de su influencia es el objetivo de los usuarios de laminaciones, para obtener un tamaño de grano adecuado. En consecuencia, este trabajo propone un estudio exhaustivo del comportamiento del AlN en el anclaje del borde de grano y en la formación de la textura cristalográfica, y la posibilidad de modelizar matemáticamente su influencia. El objetivo general de este trabajo es el estudio integral de la optimización del tratamiento térmico de los aceros eléctricos, para su aplicación por parte de las empresas usuarias de dichos materiales. Como objetivo específico, en este trabajo se propone la observación microscópica con microscopía de transmisión, de las partículas de NAl en aceros de bajo carbono de uso eléctrico, para inferir sobre su influencia en el crecimiento controlado del tamaño de grano y en la formación de textura. Se propone, además, intentar la modelización del anclaje de grano que producen los nitruros de aluminio.
Resumo:
El presente trabajo contempla el estudio del comportamiento termomecánico de un motor monopropelente, cuyo funcionamiento se basa en la descomposición catalítica del combustible, produciendo la gasificación del mismo, con su consecuente generación de calor. Estos gases, al ser conducidos convenientemente a través de una tobera con el fin de generar su apropiada expansión, producirán la acción deseada. Un diseño erróneo del sistema de alimentación podría producir el acortamiento de la vida útil del catalizador, la degradación de los sellos de la válvula, vaporizaciones indeseadas del propelente, etc.El objetivo que se persigue es construir un modelo computacional que permita visualizar el comportamiento conjunto de los diversos fenómenos, la influencia de los diversos componentes y su interacción, a fin de identificar los elementos críticos, y poder así tomar acciones correctivas u operar sobre aspectos de diseño del sistema para un mejor acondicionamiento del combustible. Para la aplicación del método, se modelizarán cada uno de los fenómenos que gobiernan el comportamiento del sistema y se les codificará en lenguaje de programación, prestando especial atención al comportamiento del fluido tanto en régimen estable como durante los transitorios. Una vez validado el programa se correrán simulaciones para determinar la influencia de los parámetros básicos de diseño sobre los procesos termomecánicos mediante un análisis de sensitividad, a fin de mitigar los posibles efectos adversos. Sin embargo, durante la ejecución de proyectos de ingeniería de este tipo, una de las cuestiones de mayor importancia es el uso racional de materiales. Una adecuada utilización de los mismos tiene diversas ventajas, dentro de las cuales podemos citar como a las de mayor relevancia a: (i) mejor aprovechamiento de las capacidades de los materiales, (ii) elementos estructurales de menor tamaño, lo que genera una economía de espacio, (iii) menor costo económico y financiero del proyecto y (iv) menor impacto ambiental. En este sentido, una de las maneras más difundidas para el uso racional de materiales es, utilizar materiales con propiedades constitutivas que se adapten mejor a las características del proyecto en desarrollo. Sin embargo, cuando se está frente a la imposibilidad de cambiar de material o mejorar las propiedades existentes, es importante comenzar a utilizar otras metodologías que permitan un mejor aprovechamiento del mismo. Aquí surge naturalmente la necesidad de introducir cambios en la forma de los componentes estructurales que integran el proyecto ejecutivo. Para realizar una adecuada optimización de los componentes estructurales, es necesario previamente definir cual o cuales van a ser las características a optimizar y como van a ser medidas esas características durante el proceso de análisis. Por lo tanto, se propone aplicar el análisis de sensibilidad topológica para problemas termo-mecánicos para optimizar los componentes estructurales del motor.