2 resultados para IR Theory

em Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Galaxias y cuasares (QSOs) con fuerte emisión en las líneas del óptico de Fe II y en el continuo infra-rojo (IR) son un grupo muy interesante de núcleos activos de galaxias (AGN), que constituyen un muy buen laboratorio para estudiar, a bajos corrimientos al rojo, procesos importantes en la formación y evolución de galaxias. En este proyecto se propone continuar con los programas observacionales (a diferentes longitudes de onda) y teóricos (evolutivos y de fotoionización) de estudios de estos IR AGNs, los que se están realizando en colaboración con investigadores de Inglaterra y E.E.U.U. Este programa de investigación nos permite estudiar varios temas importantes en astronomía extragaláctica: 1. La relación starbust y AGNs; 2. El origen de la fuerte emisión en IR y Fe II; 3. El rol de la interacción de galaxias en la evolución de la actividad nuclear; 4. El origen de sistemas de líneas de absorción ancha BAL (del tipo de baja ionización). Finalmente, deseamos estudiar en detalle nuestra sugerencia de que estos objetos constituyen young / starbust QSOs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este proyecto se enmarca en la utlización de métodos formales (más precisamente, en la utilización de teoría de tipos) para garantizar la ausencia de errores en programas. Por un lado se plantea el diseño de nuevos algoritmos de chequeo de tipos. Para ello, se proponen nuevos algoritmos basados en la idea de normalización por evaluación que sean extensibles a otros sistemas de tipos. En el futuro próximo extenderemos resultados que hemos conseguido recientemente [16,17] para obtener: una simplificación de los trabajos realizados para sistemas sin regla eta (acá se estudiarán dos sistemas: a la Martin Löf y a la PTS), la formulación de estos chequeadores para sistemas con variables, generalizar la noción de categoría con familia utilizada para dar semántica a teoría de tipos, obtener una formulación categórica de la noción de normalización por evaluación y finalmente, aplicar estos algoritmos a sistemas con reescrituras. Para los primeros resultados esperados mencionados, nos proponemos como método adaptar las pruebas de [16,17] a los nuevos sistemas. La importancia radica en que permitirán tornar más automatizables (y por ello, más fácilmente utilizables) los asistentes de demostración basados en teoría de tipos. Por otro lado, se utilizará la teoría de tipos para certificar compiladores, intentando llevar adelante la propuesta nunca explorada de [22] de utilizar un enfoque abstracto basado en categorías funtoriales. El método consistirá en certificar el lenguaje "Peal" [29] y luego agregar sucesivamente funcionalidad hasta obtener Forsythe [23]. En este período esperamos poder agregar varias extensiones. La importancia de este proyecto radica en que sólo un compilador certificado garantiza que un programa fuente correcto se compile a un programa objeto correcto. Es por ello, crucial para todo proceso de verificación que se base en verificar código fuente. Finalmente, se abordará la formalización de sistemas con session types. Los mismos han demostrado tener fallas en sus formulaciones [30], por lo que parece conveniente su formalización. Durante la marcha de este proyecto, esperamos tener alguna formalización que dé lugar a un algoritmo de chequeo de tipos y a demostrar las propiedades usuales de los sistemas. La contribución es arrojar un poco de luz sobre estas formulaciones cuyos errores revelan que el tema no ha adquirido aún suficiente madurez o comprensión por parte de la comunidad. This project is about using type theory to garantee program correctness. It follows three different directions: 1) Finding new type-checking algorithms based on normalization by evaluation. First, we would show that recent results like [16,17] extend to other type systems like: Martin-Löf´s type theory without eta rule, PTSs, type systems with variables (in addition to systems in [16,17] which are a la de Bruijn), systems with rewrite rules. This will be done by adjusting the proofs in [16,17] so that they apply to such systems as well. We will also try to obtain a more general definition of categories with families and normalization by evaluation, formulated in categorical terms. We expect this may turn proof-assistants more automatic and useful. 2) Exploring the proposal in [22] to compiler construction for Algol-like languages using functorial categories. According to [22] such approach is suitable for verifying compiler correctness, claim which was never explored. First, the language Peal [29] will be certified in type theory and we will gradually add funtionality to it until a correct compiler for the language Forsythe [23] is obtained. 3) Formilizing systems for session types. Several proposals have shown to be faulty [30]. This means that a formalization of it may contribute to the general understanding of session types.