1 resultado para Hopf bifurcation
em Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina
Resumo:
Es mi intención centrar mis investigaciones en los próximos años en las álgebras de Lie tipo H. Es nuestro objetivo encontrar nuevas familias de álgebras regulares no de tipo H y verificar la existencia o no de irreducibles cumpliendo de estas propiedades. En particular es interesante plantear su cuantización, es decir encontrar estructuras de álgebras de Hopf que sean deformaciones del álgebra envolvente correspondiente al álgebra de Lie en estudio. En particular estudiaremos si existen cuantizaciones quasitriangulares lo que nos llevaría soluciones de la ecuación de Yang-Baxter cuántica. Hasta ahora hemos logrado la cuantización en ciertos casos particulares. Para comprender cómo deben ser hechas las cuantizaciones en forma más general es necesario realizar un estudio sistemático de las estructuras de la biálgebra de las álgebras de Lie de tipo H. En particular se tratarán de detectar estructuras de biálgebra quasitriangulares y por consiguientes soluciones de la ecuación de Yang-Baxter clásica. Es un resultado conocido que las funciones de theta se pueden expresar como coeficiente matricial de la representación de Stone-Von Neumann. De los teoremas de Stone-Von Neumann para álgebras de tipo H surgen entonces funciones que serían una generalización de las funciones theta; es nuestro objetivo encontrar propiedades de estas funciones que puedan ser de interés.