2 resultados para Graficos aleatorios

em Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La verificación y el análisis de programas con características probabilistas es una tarea necesaria del quehacer científico y tecnológico actual. El éxito y su posterior masificación de las implementaciones de protocolos de comunicación a nivel hardware y soluciones probabilistas a problemas distribuidos hacen más que interesante el uso de agentes estocásticos como elementos de programación. En muchos de estos casos el uso de agentes aleatorios produce soluciones mejores y más eficientes; en otros proveen soluciones donde es imposible encontrarlas por métodos tradicionales. Estos algoritmos se encuentran generalmente embebidos en múltiples mecanismos de hardware, por lo que un error en los mismos puede llegar a producir una multiplicación no deseada de sus efectos nocivos.Actualmente el mayor esfuerzo en el análisis de programas probabilísticos se lleva a cabo en el estudio y desarrollo de herramientas denominadas chequeadores de modelos probabilísticos. Las mismas, dado un modelo finito del sistema estocástico, obtienen de forma automática varias medidas de performance del mismo. Aunque esto puede ser bastante útil a la hora de verificar programas, para sistemas de uso general se hace necesario poder chequear especificaciones más completas que hacen a la corrección del algoritmo. Incluso sería interesante poder obtener automáticamente las propiedades del sistema, en forma de invariantes y contraejemplos.En este proyecto se pretende abordar el problema de análisis estático de programas probabilísticos mediante el uso de herramientas deductivas como probadores de teoremas y SMT solvers. Las mismas han mostrado su madurez y eficacia en atacar problemas de la programación tradicional. Con el fin de no perder automaticidad en los métodos, trabajaremos dentro del marco de "Interpretación Abstracta" el cual nos brinda un delineamiento para nuestro desarrollo teórico. Al mismo tiempo pondremos en práctica estos fundamentos mediante implementaciones concretas que utilicen aquellas herramientas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este proyecto propone extender y generalizar los procesos de estimación e inferencia de modelos aditivos generalizados multivariados para variables aleatorias no gaussianas, que describen comportamientos de fenómenos biológicos y sociales y cuyas representaciones originan series longitudinales y datos agregados (clusters). Se genera teniendo como objeto para las aplicaciones inmediatas, el desarrollo de metodología de modelación para la comprensión de procesos biológicos, ambientales y sociales de las áreas de Salud y las Ciencias Sociales, la condicionan la presencia de fenómenos específicos, como el de las enfermedades.Es así que el plan que se propone intenta estrechar la relación entre la Matemática Aplicada, desde un enfoque bajo incertidumbre y las Ciencias Biológicas y Sociales, en general, generando nuevas herramientas para poder analizar y explicar muchos problemas sobre los cuales tienen cada vez mas información experimental y/o observacional.Se propone, en forma secuencial, comenzando por variables aleatorias discretas (Yi, con función de varianza menor que una potencia par del valor esperado E(Y)) generar una clase unificada de modelos aditivos (paramétricos y no paramétricos) generalizados, la cual contenga como casos particulares a los modelos lineales generalizados, no lineales generalizados, los aditivos generalizados, los de media marginales generalizados (enfoques GEE1 -Liang y Zeger, 1986- y GEE2 -Zhao y Prentice, 1990; Zeger y Qaqish, 1992; Yan y Fine, 2004), iniciando una conexión con los modelos lineales mixtos generalizados para variables latentes (GLLAMM, Skrondal y Rabe-Hesketh, 2004), partiendo de estructuras de datos correlacionados. Esto permitirá definir distribuciones condicionales de las respuestas, dadas las covariables y las variables latentes y estimar ecuaciones estructurales para las VL, incluyendo regresiones de VL sobre las covariables y regresiones de VL sobre otras VL y modelos específicos para considerar jerarquías de variación ya reconocidas. Cómo definir modelos que consideren estructuras espaciales o temporales, de manera tal que permitan la presencia de factores jerárquicos, fijos o aleatorios, medidos con error como es el caso de las situaciones que se presentan en las Ciencias Sociales y en Epidemiología, es un desafío a nivel estadístico. Se proyecta esa forma secuencial para la construcción de metodología tanto de estimación como de inferencia, comenzando con variables aleatorias Poisson y Bernoulli, incluyendo los existentes MLG, hasta los actuales modelos generalizados jerárquicos, conextando con los GLLAMM, partiendo de estructuras de datos correlacionados. Esta familia de modelos se generará para estructuras de variables/vectores, covariables y componentes aleatorios jerárquicos que describan fenómenos de las Ciencias Sociales y la Epidemiología.