3 resultados para Gas Natural

em Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina


Relevância:

100.00% 100.00%

Publicador:

Resumo:

El objetivo de este trabajo es identificar la política óptima (considerando producción, transporte y regulación) para la integración de la industria de gas natural en el Mercosur. Se analizarán factores que promueven o limitan la integración en la región. Utilizando un modelo matemático de flujo de redes, se minimizará el costo total (producción y transporte) para la región en su conjunto, satisfaciendo las restricciones de producción, capacidad de transporte y equilibrio (oferta igual a demanda) en cada nodo. El costo total (CT) de la producción y transporte de gas natural (considerando nodos para cada país en la región) es la función objetivo. El proceso de optimización consiste en identificar el nivel de gas natural producido y transportado que minimiza el costo total del sistema para la región. El modelo es estático, no considerando una optimización dinámica con relación a las reservas remanentes. Restricciones Consideramos cuatro restricciones en operación, a saber: 1. Equilibrio en los nodos: esta ecuación establece el equilibrio entre la oferta y la demanda de gas natural en cada nodo. La oferta incluye la producción local y las importaciones. Por su parte, la demanda incluye el consumo doméstico más las exportaciones. 2. Capacidad de producción en cada cuenca: esta restricción establece que las cantidades producidas en cada cuenca debería ser menor o igual a su capacidad de producción. Ello también permite la existencia de una utilización no plena de la capacidad. La capacidad máxima de producción en cada cuenca está determinada sobre la base de una medida de política para cada país a través de la cual el horizonte de consumo de las reservas probadas está establecido. Dada esta relación, el límite sobre la producción de cada año está fijado. En otras palabras, el nivel de producción no está basado ni en la capacidad instalada de producción ni en los precios, sino en la política de agotamiento decidida sobre las reservas probadas en el año de calibración del modelo. Esto permite diferentes escenarios para el análisis. Para las simulaciones se tomó el ratio de reservas a producción en el año de calibración del modelo. 3. Capacidad de transporte: el gas transportado a través de un gasoducto (los operativos y aquellos que están en plan de construcción), en general, y el gas transportado desde cada cuenca a cada mercado, en particular, debería ser menor o igual a la capacidad del gasoducto. 4. Nivel no negativo de gas natural producido: esto evita la existencia de soluciones inconsistentes no sólo desde un punto de vista económico sino también técnico. Referencias Banco Interamericano de Desarrollo BID (2001). Integración Energética en el Mercosur Ampliado, Washington DC. Beato, Paulina and Juan Benavides (2004). Gas Market Integration in the Southern Cone. Inter-American Development Bank. Washington, D.C. Conrad, Jon M. (1999). Resource Economics. Cambridge University Press. United States of America. Dasgupta, P.S. and G. M. Heal (1979). Economic Theory and Exhaustible Resources. Cambridge University Press. United States of America. Dos Santos, Edmilson M, Victorio E. Oxilia Dávalos, and Murilo T. Werneck Fagá (2006). “Natural Gas Integration in Latin America: Forward or Backwards?”. Revue de l’Energie, Nº 571, mai-juin. Fagundes de Almeida, E.L. y Trebat, N. (2004). “Drivers and barriers to cross-border gas trade in the southern cone”. Oil, Gas & Energy Law Intelligence, Vol. 2, Nº 3, Julio. Givogri, Pablo (2007). “Condiciones de abastecimiento y precios de la industria del gas de Argentina en los próximos años”. Fundación Mediterránea. Julio. Córdoba, Argentina. Kozulj, Roberto (2004). “La industria del gas natural en América del Sur: situación y posibilidades de la integración de los mercados”. Serie Recursos Naturales e Infraestructura. Nº 77. CEPAL. Santiago de Chile, Chile. Diciembre.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Identificación/caracterización del problema: El abastecimiento energético en base a fuentes no tradicionales o recursos no renovables es un tema altamente estratégico en las agendas de los Estados. El petróleo se está agotando y las existencias no alcanzarán para abastecer el consumo mundial.Esto ha llevado a Gobiernos a implementar alternativas de producción energética basadas en fuentes no tradicionales, tales como el Hidrógeno (H2), lo cual creará una Economía basada en el Hidrógeno.Argentina cuenta con una matriz energética dependiente en un 90 por ciento del petróleo y con reservas certificadas de petróleo y gas natural para 8,6 y 9,4 años respectivamente. Sin duda, los desafíos próximos serán: a) crear las herramientas necesarias para minimizar una potencial crisis energética en el corto plazo, y b) desarrollar políticas energéticas que articulen su autoabastecimiento e inserción en la Economía del Hidrógeno. Dado que Argentina cuenta con uno de los recursos renovables más importantes del mundo, "el viento", tiene condiciones inmejorables para obtener Hidrógeno (H2) por electrólisis del agua, utilizando energía eléctrica proveniente de fuentes renovables como la eólica (EE). Es por ello que apostar al desarrollo local del H2 basado en la EE nos ofrecerá como país, un rol estratégico en la futura Economía del Hidrógeno.Objetivo General: Identificar la actual Matriz Energética Argentina y reconocer los factores limitantes y oportunidades para la diversificación de la misma, utilizando la Energía Eólica (EE) como pilar hacia la Economía del Hidrógeno (Econo-H2). El fin último será esbozar herramientas de política energética e instrumentos regulatorios pertinentes, que sirvan de base para la formulación de una macro política energética.Metodología de Investigación: Se utilizarán técnicas de análisis de la siguiente información:a) Documental (textos, artículos, información periodística)b) Técnica, Legal y administrativa) Oral (Declaraciones oficiales-privadas y entrevistas)d) Visual (imágenes, gráficos y mapas)e) Datos (cronológicos, estadísticos y geográficos)Resultados esperados: La formulación de herramientas de política energética y de instrumentos regulatorios pertinentes, que sirvan de base para la formulación de una macro política energética que considere la Energía Eólica (EE) como un pilar fundamental para la diversificación de la matriz energética actual. Asimismo se reflexionará sobre la importancia de asociar la EE a la producción masiva del hidrógeno (H2) para la inserción y proyección futura de la Argentina hacia la Economía del Hidrógeno.Importancia del Proyecto: Argentina ha ratificado el protocolo de Kioto y forma parte de la Johannesburg Renewable Energy Coalition (JREC), por la cual ha asumido compromisos para fijar políticas nacionales de incentivo para el desarrollo de uso de energías renovables.Sin embargo, y a pesar de una serie de iniciativas y leyes promulgadas relacionadas a uso de energías renovables, hasta la fecha, no se ha logrado cumplir con metas concretas.Consideramos que uno de los factores fundamentales que ha dificultado esto, se basa en la ausencia de una política de Estado de mediano y largo plazo que incluya a las energías renovables como un objetivo concreto y un sistema de instrumentos y planes complementarios que acompañen dicha política.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Las poliolefinas (polietileno y polipropileno) y el poliestireno se obtienen por polimerización de monómeros derivados del petróleo. La utilización creciente del petróleo incrementa la emisión a la atmósfera de gases que provocan el recalentamiento global. Por otra parte, la escasez de reservas de petróleo provocó en los últimos años un incremento en el precio del crudo y en el de sus derivados. Por tal motivo, esto pone de manifiesto el interés actual por reemplazar al petróleo y al gas natural por materias primas renovables. El ácido poliláctico (APL) y el poli(3-hidroxibutirato) (PHB) son poliésteres de origen bacteriano que poseen propiedades termoplásticas y elastómeras similares a los plásticos derivados del petróleo, pero son biodegradables y se producen a partir de sustratos renovables. Sin embargo, su costo es aún demasiado elevado. Una de las estrategias utilizadas para abaratarlos es la utilización de sustratos de costo bajo o nulo (residuos agroindustriales y permeado de lactosuero). Por lo tanto, el principal objetivo de este proyecto es sintetizar plásticos biodegradables alternativos a los polímeros sintéticos ya existentes a partir de recursos renovables de bajo costo. En particular, se pretende utilizar permeado de lactosuero proveniente de distintas industrias de San Francisco y su zona. San Francisco se encuentra estratégicamente ubicada dentro de una de las principales cuencas lecheras de este país. Los trabajos a desarrollar serán teórico y experimentales, y se relacionan con la síntesis y caracterización de los productos y el modelado de dichos procesos. Desde el punto de vista experimental se pretende: a) sintetizar el bio-monómero (ácico láctico) y los polímeros (APL y PHB) ; b) caracterizar el bio-monómero y los polímeros mediante el empleo de técnicas volumétricas, espectroscópicas y cromatográficas; y c) medir propiedades finales (fundamentalmente mecánicas) y establecer las relaciones estructuras-propiedades. Desde el punto de vista teórico se modelarán los procesos de síntesis (bio-monómero) y polimerización. Los modelos se utilizarán para la predicción de características físicas y moleculares de los productos finales, para la simulación y la optimización de procesos, y para complementar técnicas de caracterización. Este proyecto se enmarca dentro de la Química Verde o Sustentable con lo cual se pretende incentivar el desarrollo de productos más saludables y químicamente adaptados al medio ambiente que reemplacen a los polímeros sintéticos existentes sin la pérdida de sus propiedades finales. De este modo, se espera que los resultados contribuyan al conocimiento científico y tecnológico y resulten de interés regional e internacional.