4 resultados para Era Atómica

em Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Si bien la responsabilidad internacional de los Estados es una institución tradicional del Derecho Internacional, durante la última década ha sido objeto de gran desarrollo y evolución. En efecto, la adopción en 2001 del Proyecto de Responsabilidad Internacional por Hechos Ilícitos de los Estados de la Comisión de Derecho Internacional de Naciones Unidas y los graves acontecimientos sucedidos en la última década (principalmente como consecuencia de los atentados del 11 de septiembre 2001) han puesto a esta tradicional institución jurídica en el centro de atención de la comunidad internacional. Así, la realidad del nuevo contexto internacional plantea nuevos y graves desafíos, que fuerzan al límite la interpretación de las normas jurídicas que conforman el régimen general de responsabilidad internacional de los Estados. El interés por esta materia también se manifiesta por la rica labor que ha tenido la jurisprudencia internacional en los últimos años. Paralelamente, cada vez con mayor intensidad se han multiplicado los regímenes especiales de responsabilidad internacional, vale decir aquellas normas que en forma específica y con carácter prioritario regulan la responsabilidad de los Estados en determinadas áreas de sus relaciones internacionales (comercio internacional, inversiones, integración, medio ambiente, energía atómica, Derechos Humanos, etc.). Asimismo, la responsabilidad internacional del Estado ha adquirido en el contexto actual diversas manifestaciones en distintos sectores o materias específicas y en casos concretos que merecen ser analizados (uso de la fuerza armada, terrorismo, medioambiente, comercio internacional, inversiones, integración, Derechos Humanos, etc.). En este contexto, el proyecto pretende analizar la responsabilidad internacional de los Estados desde una amplia dimensión, abarcando desde sus fundamentos teóricos hasta los principales desafíos que le plantea el contexto internacional actual

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La cromatogafía líquida de alta perfomance (HPLC) se ha transformado en una de las herramientas analíticas preferidas en el ámbito académico, tecnológico e industrial. Aunque la técnica data de fin de la década del ´60, no ha sido hasta mediado de los años '70 que la misma ganó popularidad, fundamentalmente por los avances logrados en la reproducibilidad de la fabricación de fases estacionarias, mejores bombas de alta presión y el desarrollo de detectores más sensibles. La cromatografía líquida de alta performance es en la actualidad una técnica de gran utilidad en la química clínica y en la bioquímica. Esta técnica resulta muy útil para el análisis de compuestos a nivel de trazas dentro de las complejas matrices biológicas. El objetivo principal del presente proyecto es realizar investigaciones en el área de la Química Analítica, específicamente química bioanalítica, a fin de desarrollar metodologías y detectores electroquímicos altamente sensibles y selectivos para el análisis de compuestos de interés biológico mediante cromatografía líquida de alta presión. El proyecto comprende tres líneas íntimamente relacionadas: A) Análisis de metabolitos de catecolaminas por HPLC con apareamiento iónico, en orina de ratas cuyas madres han sido sometidas a estrés por inmovilización; esto permitirá correlacionar el efecto del estrés prenatal en los niveles de catecolaminas presentes en las crías. Esta línea está comprendida en un objetivo más amplio que es correlacionar el efecto del estrés prenatal sobre la madurez sexual de las crías. B) Análisis de antibióticos del grupo de las fluoroquinolonas mediante técnicas electroquímicas y de HPLC. Se pretenden elucidar los procesos de electrodo que ocurren durante la electrorreducción de antibióticos del grupo de las fluoroquinolonas, para de esta manera desarrollar detectores electroquímicos para sistemas de flujo continuo. C) Desarrollo de un micropotenciostato computarizado para la detección en sistemas de flujo continuo. (...) También se pretende implementar el uso de un microelectrodo anular desarrollado en la Comisión Nacional de Energía Atómica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La utilización de los plásticos ha crecido dramáticamente durante los últimos 30 años y en forma paralela también se ha incrementado el volumen de desperdicios provenientes de los mismos. La distribución individual de los mismos en los residuos domiciliarios varía de acuerdo al origen socioeconómico de los grupos sociales, oscilando entre 39-47% de polietileno PE, 27-41% de polietilentereftalato PET, 5-12% de poliestireno PS, 10-15% de polipropileno PP, entre otros; ocupando entre 9-12% de los desperdicios en rellenos sanitarios (expresado en porcentajes en peso). Para el aprovechamiento de los residuos plásticos existen diferentes opciones, de las cuales el reciclado químico aparece como la alternativa más prometedora tanto ambiental como económica. Dentro del reciclado químico de los desechos plásticos, se encuentra el craqueo catalítico, que es un proceso a partir del cual se pueden obtener hidrocarburos líquidos y gaseosos de gran valor agregado, a partir de la adición de catalizadores, lo cual mejora la tecnología puramente térmica, ya que el espectro en la distribución de productos es mucho más reducido, permitiendo alcanzar mayor selectividad hacia ciertos productos en función de las características del catalizador utilizado, reduciendo los tiempos de reacción y las temperaturas del proceso a 350-550°C. En la presente investigación se propone la síntesis de materiales catalíticos a medida con base en materiales microporosos (Zeolitas), para la transformación de residuos plásticos en hidrocarburos de interés para la industria petroquímica o combustibles. Los materiales catalíticos (del tipo ZSM-11, BETA) se prepararán por técnicas hidrotérmicas, a los cuales se les incorporarán funciones activas (H, Zn, Co, Cr, Ni, Mn) empleando tratamientos químicos y térmicos. Se caracterizarán mediante el empleo de diversas técnicas fisicoquímicas, tales como Difracción de rayos X, Absorción Atómica, Análisis Térmicos, Espectroscopía Infrarrojo con transformada de Fourier, BET, Microscopía de barrido electrónico con microsonda y Mediciones de propiedades magnéticas ( a temperatura ambiente con variación de campo y a campo constante con variación de temperatura). Finalmente estos materiales se emplearán en la transformación de residuos plásticos (PEBD, PEAD y mezclas de los mismos) a hidrocarburos aromáticos y cortes de combustibles. Se estudiará de las influencia de condiciones operativas (reactor de lecho fijo a presión atmosférica, temperaturas de reacción, tiempos de reacción, relación polímero/catalizador, etc.), a los fines de optimizar el sistema catalítico. Aquellos catalizadores que presenten mejor comportamiento para el proceso, serán evaluados a bajos tiempos de contacto en un reactor discontinuo de lecho fluidizado, denominado Simulador de Riser.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La utilización de los plásticos ha crecido dramáticamente durante los últimos 30 años y en forma paralela también se ha incrementado el volumen de desperdicios provenientes de los mismos. La distribución individual de los mismos en los residuos domiciliarios varía de acuerdo al origen socioeconómico de los grupos sociales, oscilando entre 39-47% de polietileno PE, 27-41% de polietilentereftalato PET, 5-12% de poliestireno PS, 10-15% de polipropileno PP, entre otros; ocupando entre 9-12% de los desperdicios en rellenos sanitarios (expresado en porcentajes en peso). Para el aprovechamiento de los residuos plásticos existen diferentes opciones, de las cuales el reciclado químico aparece como la alternativa más prometedora tanto ambiental como económica. Dentro del reciclado químico de los desechos plásticos, se encuentra el craqueo catalítico, que es un proceso a partir del cual se pueden obtener hidrocarburos líquidos y gaseosos de gran valor agregado, a partir de la adición de catalizadores, lo cual mejora la tecnología puramente térmica, ya que el espectro en la distribución de productos es mucho más reducido, permitiendo alcanzar mayor selectividad hacia ciertos productos en función de las características del catalizador utilizado, reduciendo los tiempos de reacción y las temperaturas del proceso a 350-550°C. En la presente investigación se propone la síntesis de materiales catalíticos a medida con base en materiales microporosos (Zeolitas), para la transformación de residuos plásticos en hidrocarburos de interés para la industria petroquímica o combustibles. Los materiales catalíticos (del tipo ZSM-11, BETA) se prepararán por técnicas hidrotérmicas, a los cuales se les incorporarán funciones activas (H, Zn, Co, Cr, Ni, Mn) empleando tratamientos químicos y térmicos. Se caracterizarán mediante el empleo de diversas técnicas fisicoquímicas, tales como Difracción de rayos X, Absorción Atómica, Análisis Térmicos, Espectroscopía Infrarrojo con transformada de Fourier, BET, Microscopía de barrido electrónico con microsonda y Mediciones de propiedades magnéticas ( a temperatura ambiente con variación de campo y a campo constante con variación de temperatura). Finalmente estos materiales se emplearán en la transformación de residuos plásticos (PEBD, PEAD y mezclas de los mismos) a hidrocarburos aromáticos y cortes de combustibles. Se estudiará de las influencia de condiciones operativas (reactor de lecho fijo a presión atmosférica, temperaturas de reacción, tiempos de reacción, relación polímero/catalizador, etc.), a los fines de optimizar el sistema catalítico. Aquellos catalizadores que presenten mejor comportamiento para el proceso, serán evaluados a bajos tiempos de contacto en un reactor discontinuo de lecho fluidizado, denominado Simulador de Riser.