4 resultados para Data Integrity

em Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este proyecto propone extender y generalizar los procesos de estimación e inferencia de modelos aditivos generalizados multivariados para variables aleatorias no gaussianas, que describen comportamientos de fenómenos biológicos y sociales y cuyas representaciones originan series longitudinales y datos agregados (clusters). Se genera teniendo como objeto para las aplicaciones inmediatas, el desarrollo de metodología de modelación para la comprensión de procesos biológicos, ambientales y sociales de las áreas de Salud y las Ciencias Sociales, la condicionan la presencia de fenómenos específicos, como el de las enfermedades.Es así que el plan que se propone intenta estrechar la relación entre la Matemática Aplicada, desde un enfoque bajo incertidumbre y las Ciencias Biológicas y Sociales, en general, generando nuevas herramientas para poder analizar y explicar muchos problemas sobre los cuales tienen cada vez mas información experimental y/o observacional.Se propone, en forma secuencial, comenzando por variables aleatorias discretas (Yi, con función de varianza menor que una potencia par del valor esperado E(Y)) generar una clase unificada de modelos aditivos (paramétricos y no paramétricos) generalizados, la cual contenga como casos particulares a los modelos lineales generalizados, no lineales generalizados, los aditivos generalizados, los de media marginales generalizados (enfoques GEE1 -Liang y Zeger, 1986- y GEE2 -Zhao y Prentice, 1990; Zeger y Qaqish, 1992; Yan y Fine, 2004), iniciando una conexión con los modelos lineales mixtos generalizados para variables latentes (GLLAMM, Skrondal y Rabe-Hesketh, 2004), partiendo de estructuras de datos correlacionados. Esto permitirá definir distribuciones condicionales de las respuestas, dadas las covariables y las variables latentes y estimar ecuaciones estructurales para las VL, incluyendo regresiones de VL sobre las covariables y regresiones de VL sobre otras VL y modelos específicos para considerar jerarquías de variación ya reconocidas. Cómo definir modelos que consideren estructuras espaciales o temporales, de manera tal que permitan la presencia de factores jerárquicos, fijos o aleatorios, medidos con error como es el caso de las situaciones que se presentan en las Ciencias Sociales y en Epidemiología, es un desafío a nivel estadístico. Se proyecta esa forma secuencial para la construcción de metodología tanto de estimación como de inferencia, comenzando con variables aleatorias Poisson y Bernoulli, incluyendo los existentes MLG, hasta los actuales modelos generalizados jerárquicos, conextando con los GLLAMM, partiendo de estructuras de datos correlacionados. Esta familia de modelos se generará para estructuras de variables/vectores, covariables y componentes aleatorios jerárquicos que describan fenómenos de las Ciencias Sociales y la Epidemiología.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Los eventos transitorios únicos analógicos (ASET, Analog Single Event Transient) se producen debido a la interacción de un ión pesado o un protón de alta energía con un dispositivo sensible de un circuito analógico. La interacción del ión con un transistor bipolar o de efecto de campo MOS induce pares electrón-hueco que provocan picos que pueden propagarse a la salida del componente analógico provocando transitorios que pueden inducir fallas en el nivel sistema. Los problemas más graves debido a este tipo de fenómeno se dan en el medioambiente espacial, muy rico en iones pesados. Casos típicos los constituyen las computadoras de a bordo de satélites y otros artefactos espaciales. Sin embargo, y debido a la continua contracción de dimensiones de los transistores (que trae aparejado un aumento de sensibilidad), este fenómeno ha comenzado a observarse a nivel del mar, provocado fundamentalmente por el impacto de neutrones atmosféricos. Estos efectos pueden provocar severos problemas a los sistemas informáticos con interfaces analógicas desde las que obtienen datos para el procesamiento y se han convertido en uno de los problemas más graves a los que tienen que hacer frente los diseñadores de sistemas de alta escala de integración. Casos típicos son los Sistemas en Chip que incluyen módulos de procesamiento de altas prestaciones como las interfaces analógicas.El proyecto persigue como objetivo general estudiar la susceptibilidad de sistemas informáticos a ASETs en sus secciones analógicas, proponiendo estrategias para la mitigación de los errores.Como objetivos específicos se pretende: -Proponer nuevos modelos de ASETs basados en simulaciones en el nivel dispositivo y resueltas por el método de elementos finitos.-Utilizar los modelos para identificar las secciones más propensas a producir errores y consecuentemente para ser candidatos a la aplicación de técnicas de endurecimiento a radiaciones.-Utilizar estos modelos para estudiar la naturaleza de los errores producidos en sistemas de procesamiento de datos.-Proponer soluciones novedosas para la mitigación de estos efectos en los mismos circuitos analógicos evitando su propagación a las secciones digitales.-Proponer soluciones para la mitigación de los efectos en el nivel sistema.Para llevar a cabo el proyecto se plantea un procedimiento ascendente para las investigaciones a realizar, comenzando por descripciones en el nivel físico para posteriormente aumentar el nivel de abstracción en el que se encuentra modelado el circuito. Se propone el modelado físico de los dispositivos MOS y su resolución mediante el Método de Elementos Finitos. La inyección de cargas en las zonas sensibles de los modelos permitirá determinar los perfiles de los pulsos de corriente que deben inyectarse en el nivel circuito para emular estos efectos. Estos procedimientos se realizarán para los distintos bloques constructivos de las interfaces analógicas, proponiendo estrategias de mitigación de errores en diferentes niveles.Los resultados esperados del presente proyecto incluyen hardware para detección de errores y tolerancia a este tipo de eventos que permitan aumentar la confiabilidad de sistemas de tratamiento de la información, así como también nuevos datos referentes a efectos de la radiación en semiconductores, nuevos modelos de fallas transitorias que permitan una simulación de estos eventos en el nivel circuito y la determinación de zonas sensibles de interfaces analógicas típicas que deben ser endurecidas para radiación.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La programación concurrente es una tarea difícil aún para los más experimentados programadores. Las investigaciones en concurrencia han dado como resultado una gran cantidad de mecanismos y herramientas para resolver problemas de condiciones de carrera de datos y deadlocks, problemas que surgen por el mal uso de los mecanismos de sincronización. La verificación de propiedades interesantes de programas concurrentes presenta dificultades extras a los programas secuenciales debido al no-determinismo de su ejecución, lo cual resulta en una explosión en el número de posibles estados de programa, haciendo casi imposible un tratamiento manual o aún con la ayuda de computadoras. Algunos enfoques se basan en la creación de lenguajes de programación con construcciones con un alto nivel de abstración para expresar concurrencia y sincronización. Otros enfoques tratan de desarrollar técnicas y métodos de razonamiento para demostrar propiedades, algunos usan demostradores de teoremas generales, model-checking o algortimos específicos sobre un determinado sistema de tipos. Los enfoques basados en análisis estático liviano utilizan técnicas como interpretación abstracta para detectar ciertos tipos de errores, de una manera conservativa. Estas técnicas generalmente escalan lo suficiente para aplicarse en grandes proyectos de software pero los tipos de errores que pueden detectar es limitada. Algunas propiedades interesantes están relacionadas a condiciones de carrera y deadlocks, mientras que otros están interesados en problemas relacionados con la seguridad de los sistemas, como confidencialidad e integridad de datos. Los principales objetivos de esta propuesta es identificar algunas propiedades de interés a verificar en sistemas concurrentes y desarrollar técnicas y herramientas para realizar la verificación en forma automática. Para lograr estos objetivos, se pondrá énfasis en el estudio y desarrollo de sistemas de tipos como tipos dependientes, sistema de tipos y efectos, y tipos de efectos sensibles al flujo de datos y control. Estos sistemas de tipos se aplicarán a algunos modelos de programación concurrente como por ejemplo, en Simple Concurrent Object-Oriented Programming (SCOOP) y Java. Además se abordarán propiedades de seguridad usando sistemas de tipos específicos. Concurrent programming has remained a dificult task even for very experienced programmers. Concurrency research has provided a rich set of tools and mechanisms for dealing with data races and deadlocks that arise of incorrect use of synchronization. Verification of most interesting properties of concurrent programs is a very dificult task due to intrinsic non-deterministic nature of concurrency, resulting in a state explosion which make it almost imposible to be manually treat and it is a serious challenge to do that even with help of computers. Some approaches attempts create programming languages with higher levels of abstraction for expressing concurrency and synchronization. Other approaches try to develop reasoning methods to prove properties, either using general theorem provers, model-checking or specific algorithms on some type systems. The light-weight static analysis approach apply techniques like abstract interpretation to find certain kind of bugs in a conservative way. This techniques scale well to be applied in large software projects but the kind of bugs they may find are limited. Some interesting properties are related to data races and deadlocks, while others are interested in some security problems like confidentiality and integrity of data. The main goals of this proposal is to identify some interesting properties to verify in concurrent systems and develop techniques and tools to do full automatic verification. The main approach will be the application of type systems, as dependent types, type and effect systems, and flow-efect types. Those type systems will be applied to some models for concurrent programming as Simple Concurrent Object-Oriented Programming (SCOOP) and Java. Other goals include the analysis of security properties also using specific type systems.